Sunday, April 13, 2014

Preventing and Reversing Heart Disease - DACH


Preventing and Reversing Heart Disease, Part Three


Coronary Angiogram Real Time Cath Lab
Preventing and Reversing Heart Disease
Part Threeby Jeffrey Dach MD
This Article is Part Three.
For Part One Click Here,
and for  Part Two Click Here.

A Man with Progressive Coronary Artery Disease Unresponsive to Statins
62 year old Jim came just had his third cardiac stent.  A year ago, Jim noticed a “tight feeling” in his chest radiating to his throat, was rushed to the ER, and doctors found he was having a heart attack. A coronary angiogram showed extensive coronary artery disease with irregular plaque formation.

Progressive Coronary Artery Plaque in Spite of Low Cholesterol
For 12 years now, Jim’s cholesterol level had been driven down into the 140 area by the “top cardiologist in the area”, who prescribed a hefty dose of a statin anti-cholesterol drug.  In spite of the lowest cholesterol level on the planet,  Jim’s heart disease progressed relentlessly with worsening calcium scores, worsening angiograms, and worsening symptoms of chest pain.   His disease progression was obviously not caused by an elevated cholesterol level.  For a discussion of how elevated cholesterol is NOT the Cause of Heart Disease, see my article on patients with familial hypercholesterolemia who have very high cholesterol, yet have no heart disease, proving the hypothesis that cholesterol levels are not necessarily a risk factor for heart disease, and reducing cholesterol levels with drugs may be a fruitless endeavor.

Doctors advise Jim to Stop Testosterone
Jim had been taking topical testosterone for the past 5 years, and recently stopped it because of advice from his cardiologist who pointed a finger and said, “You should stop the testosterone….The testosterone is bad for your heart and probably caused your heart attack“.  Jim came to see me for a second opinion.

Jim’s Doctor is Right About That
Jim’s doctor is right in that a number of recent studies have shown a small increase in heart attack rate in men starting testosterone.   This is caused by increased hematocrit (red blood cell count) and increased iron stores which thicken the blood and make it more susceptible to blood clot formation, all risk factors for heart attack.  See  my article on this.  The simple solution is to monitor blood count and iron levels, and donate blood at the blood bank every 4 to 6 weeks to reduce iron and red cells.

Our Approach to Preventing Heart Disease
I must preface these remarks with our approach to prevention and reversal of heart disease which is outlined in Part One  and Part Two  of this series.  We credit and rely heavily on the  “Track Your Plaque Program ” by William Davis MD.  We also use the Linus Pauling Protocol.

Bioidentical Hormones For Prevention and Reversal of Heart Disease
In this article we will revisit the role of the testosterone and estradiol in prevention and reversal of heart disease, looking at the latest research.  Firstly, let’s try to answer the question:
” Is low testosterone a risk factor for heart diease, and is normal testosterone level protective of heart disease?” 
 
Here we assume red cell count and iron levels are kept under control with monthly trips to the blood bank, so there is no short term increase in heart attack rate from hypercoagulability, as noted in a few recent studies of men started on testosterone.

Low Testosterone is Predictive for Increased Mortality from Heart Disease
If testosterone was causative of heart disease,  one would expect men with high testosterone to have more heart disease, and men with low testosterone to have less heart disease.  This is exactly opposite of four major studies showing men with low testosterone have both increased all-cause mortality and increased heart disease mortality.(1-4)

Testosterone Levels in Men With Heart Disease
A recent study by Malkin looked at Testosterone levels in men with known underlying heart disease.  He showed that low Testosterone is common in men with underlying heart disease, and this is associated with almost double the mortality rate.(5)  Again these findings suggest that higher Testosterone is protective and prevents progression of heart disease.  The assumption that Testosterone causes progression of atherosclerosis plaque has been shown false.(6-9).
arterial plaqueAbove image: Cross section of arteries (left to right) showing development of fatty streak which enlarges into the atherosclerotic plaque.
 
Animal Studies on Mechanism of Protection
A number of elegant animal studies have been done to elucidate the mechanism by which testosterone is protective of heart disease.  A 1999 study by Alex Andersen in rabbits showed that testosterone reduced aortic atheroscleosis.(10)  Castrated rabbits had low testosterone levels and doubled the  aortic atherosclerosis plaque formation, suggesting that testosterone has a strong preventive effect on male atherosclerosis. In the groups receiving testosterone or DHEA they found marked inhibition of atherosclerosis compared with placebo. The mechanism was not clearly defined.  They speculated on a non-lipid mediated mechanism, possibly related to aromatase conversion of testosterone to estrogen.(10 )

Mouse Model- It’s Really the Estrogen That’s Protective
In an elegant 2001 study published in PNAS, Nathan et al used a mouse model of accelerated atherosclerosis to show that testosterone inhibits atherosclerosis by its conversion to estradiol by the aromatase enzyme.  Similar protection from atherosclerosis was obtained by administering estradiol.  In addition, blocking conversion of testosterone to estradiol with the aromatase inhibitor, anastrazole, eliminated the protective effect, and these animals had progressive atherosclerosis.(11)  Dr Nathan says:
“Testosterone attenuates early atherogenesis most likely by being converted to estrogens by the enzyme aromatase expressed in the vessel wall”.(11)
 
This information suggests that men with heart disease should NOT take arimidex (anastrazole) along with their testosterone replacement therapy.

Genetically Altered Mouse Model Provides Answers
These findings were confirmed  by Nettleship  in a 2007 study published in Circulation using the Tfm genetically modifired mouse.  This is a mouse genetically altered to have a defective androgen receptor.  In these mice,  testosterone cannot work through its normal pathway, since there is no receptor.  In spite of the lack of androgen receptor, Nettleship found that testosterone replacement in these mice attenuated atherosclerotic changes (fatty streak formation), suggesting the protective effect of testosterone was independent of the testosterone receptor.  The authors concluded that the protective benefits of testosterone were through aromatase conversion to estradiol, and then via the estrogen receptor pathways.(12)

Dr Nettleship’s findings were confirmed by Bourghardt  in a Nov 2010 study published in Endocrinology which using ”ARKO” mice, genetically modified to “knock out” the Androgen Receptor, modified to be Apo-E deficient (to accelerate atherosclerosis).  The authors showed that testosterone therapy administered to the ARKO mice inhibited atherosclerosis.  However inhibition of atherosclerosis was more profound in the wild type mice that still had intact androgen receptors.  The authors concluded the mechanism of protection of testosterone was due to both mechanisms, through the Androgen Receptor as well as through aromatase conversion to estradiol.(13 )

Conclusion:
These genetically modified mouse studies suggest that testosterone’s cardio-protective benefits are due to conversion to estrogen, and that estrogen is the cardioprotective agent.  Both estrogen and testosterone are bioidentical hormones.   Clearly the message here is Testosterone Replacement Therapy should be an important part of any heart disease prevention program,  in those patients who have low Testosterone levels.

Why Do Men Have More Heart Disease Than Women ?
Men and women are quite different when it comes to heart disease.  Men have more than twice the risk of dying from coronary disease than women. (14)  In women, coronary artery disease (CAD) develops on average 10 years later than in men.(15)  Could higher levels of estrogen (estradiol) in women explain the protection enjoyed by women?

Estrogen is Protective
Dr Xing from the University of Alabama would say, yes of course.  In a 2009 article, Dr Xing names a number of mechanisms by which estradiol protects both men and women from heart disease. He says:
“Estrogens have antiinflammatory and vasoprotective effects.  Natural endogenous estrogen 17β-estradiol (bioidentical) has been shown to cause rapid endothelium-independent dilation of coronary arteries of men and women, to augment endothelium-dependent relaxation of human coronary arteries, and improve endothelial function…Observational studies have shown substantial benefit (50% reduction in heart disease) of hormone therapy in women who choose to use menopausal hormones.”(15 )
 
Estrogen is Protective of Heart Disease
A 2010 study in European Heart by Kitamura et al  compared males to female heart attack rates. They found 61% fewer heart attacks in women of reproductive age with high estrogen levels compared to males of the same age.  The authors conclude that estrogen confers cardioprotective benefits.(16)
A review of the Nurse Health Study published in the 2000 Annals  showed 40% reduction in heart disease in hormone replacement users and that “postmenopausal hormone use decreases risk for major coronary events.” (17-18)

See my article on how estrogen protects women from heart disease: Bioidentical Hormones Prevent Heart Disease.

Coronary bypass surgeryComparing Three Treatment Modalities
There are three mainstream treatment modalities for coronary artery disease.
1) Surgery with coronary artery bypass.
2) Balloon angioplasty with stenting.
3) Medical Therapy with drugs such as calcium channel blockers and beta blockers.
Which one of these treatment modalities confers the most benefit? The answer is:  None of Them.
Medical Management with Drugs Provides the Same Benefit as Cardiac Angioplasty, Stenting or Bypass
Eleven randomized studies reviewed 3,000 patients with stable coronary artery disease.  Treatment with  angioplasty and stenting showed the same mortality and heart attack rate as drug treatment (also known as medical management).  They both offer the same benefit.(19)(20)
The MASS II study  published in the 2007 Circulation showed medical managment with drugs to have similar outcome to stent or bypass. (21)    A troubling fact remains that after all these studies have been completed,  there is no conclusive evidence that intervention with CABG (coronary artery bypass graft) or coronary stent  is superior to medical therapy (drugs) for treating multivessel coronary artery disease with stable angina and preserved ventricular function.(21 )  Sorano attempts to sort out the fine points of selecting between treatment modalities in her 2009 report. (22)

How Can Drugs Provide the Same Outcome as Surgery or Stenting?
The EPC, the Endothelial Progentor Cell.
Now we have an important question to ask.  How is it possible that the humble country doctor with a few drugs can provide similar outcomes when compared to the high and mighty cardiac surgeon and the interventional cardiologist?  How can drug treatment do as well or better than the cardiac stent or surgical bypass procedure?

I suggest the answer resides in the phenomenon known as “collateral vessel formation”.  The heart has the ability to grow new blood vessels which provide blood flow around the blocked artery.  Medical treatment gives the heart time to grow new collateral vessels. The key to understanding this new vessel formation is the endothelial progenitor cell, also known as the EPC. The EPC is a special type of stem cell found in the bone marrow that circulates to injured myocardium where they promote local angiogenesis, making new blood vessels. (23)

Turning On The Endothelial Progenitor Cell – How to Do It?
A previous article on telomeres and anti-aging discussed the role of estrogen as an activator of telomerase which serves as an anti-aging therapy.  Recent research shows that estrogen  activates the telomeres on endothelial progenitor cells and improves the EPC functional capacity. (24)  Another study showed reduced numbers of EPC cells in the peripheral blood of men with low testosterone levels. (25)

Estradiol Enhances Recovery After Myocardial Infarction – Collateral Vessels
An elegant mouse study was published by Isakura in 2006 Circulation .  They used a mouse model in which myocardial infarction (heart attack) was induced by ligation of the left coronary artery.  The estradiol treated mice showed increased circulating EPC’s and greater capillary density in the recovering myocardium.  This indicates enhanced recovery in the estradiol treated mice by regrowth of collateral vessels. (26)(27)(28)

A study from Bolego in Italy showed that the cardio protective benefits of estrogen could be duplicated with an estrogen receptor drug called PPT. They found that:
“myocardial ischemia-reperfusion injury was exacerbated by ovariectomy (which reduced estrogen levels).   This injury returned to baseline following treatment with estrogen-like drug PPT.”
The protective effects were linked to increased levels of endothelial progenitor cells (EPCs).(29)

Conclusion
Recent research shows the cardioprotective benefits of the bioidentical hormones, testosterone and estrogen.  Testosterone benefit appears mediated by conversion to estradiol via the aromatase enzyme.  Estradiol’s benefits appear related to activation of Endothelial Progenitor Cells which invoke new collateral circulation in areas of injury.

Another treatment modality called EECP also creates new collateral vessels.  Read my article on EECP here.
===================================================================
Read the complete article here.

2 comments:

  1. I'm always looking for fresh and useful quality recipes to be heart healthy. It was a delightful surprise as it contains some very good information for heart awareness. I definitely enjoyed the read. I have a family background of heart disease, so I am very conscious of the point that I'm at possibility too. I additionally want to keep my loved ones healthy… Keep on sharing!!!

    ReplyDelete
  2. Your article is fantastic and you have provided the depth sight about the heart attack symptoms. Knowing and understanding that heart attack health issue is serious and potentially deadly can help to save your life or the life of someone you love. Shortness of breath that occurs especially without activity during sleep or rest could be a sign of a serious heart failure. Thank you for this nice article.

    ReplyDelete

I appreciate appropriate comments but reserve the right to publish those with credible, verifiable, significant information to contribute to the topic at hand. I will not post comments with commercial content nor those containing personal attacks. Thank You.