The following was posted on the Track Your Plaque forum on 9/14/2013
==================================================================
Here are some highlights from here: http://chriskresser.com/the-diet-heart-myth-statins-dont-save-lives-in-people-without-heart-disease backed up by studies.
An analysis by Dr. David Newman in 2010 which drew on large meta-analyses of statins found that among those with pre-existing heart disease that took statins for 5 years (1):
96% saw no benefit at all
1.2% (1 in 83) had their lifespan extended (were saved from a fatal heart attack)
2.6% (1 in 39) were helped by preventing a repeat heart attack
0.8% (1 in 125) were helped by preventing a stroke
0.6% (1 in 167) were harmed by developing diabetes
10% (1 in 10) were harmed by muscle damage A heart attack or stroke can have a significant negative impact on quality of life, so any intervention that can decrease the risk of such an event should be given serious consideration. But even in the population for which statins are most effective—those with pre-existing heart disease—83 people have to be treated to extend one life, and 39 people have to be treated to prevent a repeat heart attack.
Primary prevention (those without pre-existing heart disease)Statins do reduce the risk of cardiovascular events in people without pre-existing heart disease. However, this effect is more modest than most people assume. Dr. Newman also analyzed the effect of statins given to people with no known heart disease for 5 years (5):
98% saw no benefit at all
1.6% (1 in 60) were helped by preventing a heart attack
0.4% (1 in 268) were helped by preventing a stroke
1.5% (1 in 67) were harmed by developing diabetes
10% (1 in 10) were harmed by muscle damageThese statistics present a more sobering view on the efficacy of statins in people without pre-existing heart disease. They suggest that you’d need to treat 60 people for 5 years to prevent a single heart attack, or 268 people for 5 years to prevent a single stroke. These somewhat unimpressive benefits must also be weighed against the downsides of therapy, such as side effects and cost. During that hypothetical 5 year period, 1 in 67 patients would have developed diabetes and 1 in 10 patients would have developed muscle damage (which can be permanent in some cases, as we’ll see later in this section).
To summarize:
The only population that statins extend life in are men under 80 years of age with pre-existing heart disease.
In men under 80 without pre-existing heart disease, men over 80 with or without heart disease, and women of any age with or without heart disease, statins have not been shown to extend lifespan.
Statins do reduce the risk of cardiovascular events in all populations. A heart attack or stroke can have a significant, negative impact on quality of life—particularly in the elderly—so this benefit should not be discounted.
However, the reductions in cardiovascular events are often more modest than most assume; 60 people with high cholesterol but no heart disease would need to be treated for 5 years to prevent a single heart attack, and 268 people would need to be treated for 5 years to prevent a single stroke.
Statins have been shown to cause a number of side effects, such as muscle pain and cognitive problems, and they are probably more common than currently estimated due to under-reporting.
My intention here is not to suggest that statins have no place in the treatment of heart disease, but rather to give you the objective information you need to decide (along with your doctor) whether they are appropriate for you. The decision whether to take them should be based on whether you have pre-existing heart disease, what your overall risk of a heart attack is, how healthy your diet and lifestyle is, what other treatments you’ve already tried, and your own risk tolerance and worldview. It’s clear that statins reduce heart disease as well as the risk of death in those that have already had a heart attack, so if you’re in this group and you’ve already tried diet and lifestyle interventions without much impact on your lipid or inflammatory markers, you are more likely to benefit.
===========================================================
Read the whole thing here if you are a member.
The title 'Credible Evidence' is a key statement to what this blog is all about primarily in the arena of Heart Disease, Cholesterol and Statins.
Showing posts with label CHRIS KRESSER. Show all posts
Showing posts with label CHRIS KRESSER. Show all posts
Saturday, September 14, 2013
Friday, May 3, 2013
What Causes Elevated LDL Particle Number? - Kresser
What Causes Elevated LDL Particle Number?
In the last article in this series, I explained that LDL particle number (LDL-P) is a much more accurate predictor of cardiovascular disease risk than either LDL or total cholesterol. In this article, I’m going to briefly outline the five primary causes of elevated LDL-P.
Conventional medicine is primarily focused on suppressing symptoms. If your blood pressure is high, you take a medication to lower it. If your blood sugar is high, you take a medication to lower it. If your cholesterol is high, you take a medication to lower it. In most cases there is rarely any investigation into why these markers are high in the first place, with the possible exception of some basic (but often incorrect) counseling on diet and exercise.
On the other hand, functional medicine—which is what I practice—focuses on treating the underlying cause of health problems instead of just suppressing symptoms. If your blood sugar, blood pressure or cholesterol are high, the first question a functional medicine practitioner will ask is “why?” If we can identify the root cause of the problem, and address it at that level, medication is often unnecessary.
To use a simple analogy, if you have weeds in your garden, what happens if you just cut the weeds from the top? They grow right back—and sometimes faster than before! If you really want to get rid of them once and for all, you have to pull them up by their roots.
With this in mind, let’s look at some of the potential causes of elevated LDL particle number. If your LDL-P is high, it makes sense to test for and treat any of the conditions below (with the exception of the last, which is genetic and thus can’t be treated) before—or at least along with—taking pharmaceutical drugs.
As you might expect, there’s a limit to how much “stuff” that each LDL particle can carry. Each LDL particle has a certain number of cholesterol molecules and a certain number of triglycerides. As the number of triglycerides increases, the amount of cholesterol it can carry decreases, and the liver will have to make more LDL particles to carry a given amount of cholesterol around the body. This person will end up with a higher number of LDL particles.
Consider two hypothetical people. Both have an LDL cholesterol level of 130 mg/dL, but one has high triglycerides and the other has low triglycerides. The one with the high triglyceride level will need more LDL particles to transport that same amount of cholesterol around the body than the one with a low triglyceride level.
Numerous studies have found an association between increased LDL particle number, and metabolic syndrome. One study measured ApoB, a marker for LDL particle number, in a group of 1,400 young Finns with no established disease. The participants with the highest LDL particle number were 2.8 times more likely to have metabolic syndrome than those with the lowest levels of LDL-P. (1) A much larger study of over 300,000 men also found a strong association between LDL-P and metabolic syndrome and its components (i.e. insulin resistance, abdominal obesity, high blood pressure, etc.). (2)
Studies show that LDL particle number is higher even in subclinical hypothyroidism (high TSH with normal T4 and T3), and that LDL particle number will decrease after treatment with thyroid hormone. (5)
Several mechanisms have been proposed to explain the association between infections and elevated blood lipids. Some evidence suggests that viral and bacterial infections directly alter the lipid metabolism of infected cells, and other evidence suggests that lipids increase as a result of the body’s attempt to fight off infection. Other evidence suggests that LDL has antimicrobial properties and is directly involved in inactivating microbial pathogens. This has been confirmed by studies showing that mice with defective LDL receptors—and thus very high levels of LDL—are protected against infection by gram-negative bacteria like H. pylori. (8)
Though more research is needed in this area, the studies above suggest that a leaky gut could increase the level of LPS and other endotoxins in the blood, and thus increase LDL particle number as a result. I have seen this in my practice. I recently had a patient with high LDL-P and no other risk factors. I tested his gut and discovered H. pylori and small intestine bacterial overgrowth (SIBO). After treating his gut, his LDL-P came down to normal levels.
Homozygous carriers of FH have two copies of the mutated gene. This condition is very rare. It affects approximately 1 in a million people. And people that are homozygous for this mutation have extremely high total cholesterol levels, often as high as 1000 mg/dL. And unfortunately they usually die from severe atherosclerosis and heart disease before the age of 25.
Heterozygous carriers, however, only have a single copy of the mutated gene, and the other copy is functioning normally. This is much more common. The prevalence is between 1 in 300 to 1 in 500 people, depending on which study you look at. These heterozygous carriers of FH have total cholesterol levels that often range between 350 and 550 mg/dL, along with very high LDL particle number. They have about three times higher risk of death from heart disease than people without FH if it goes untreated.
It’s important to note that people with FH have primarily large, buoyant LDL particles, and yet are still at much higher risk for cardiovascular disease. While it’s true that small, dense, oxidized LDL particles are more likely to cause atherosclerosis, large, buoyant particles can also be harmful when their concentration is high enough. This is one reason why LDL particle number is a superior marker to LDL particle size.
In the next article in this series, I will debunk the myth that statins extend lifespan in healthy people with no pre-existing heart disease.
=================================================================
Read the complete article here.
Conventional medicine is primarily focused on suppressing symptoms. If your blood pressure is high, you take a medication to lower it. If your blood sugar is high, you take a medication to lower it. If your cholesterol is high, you take a medication to lower it. In most cases there is rarely any investigation into why these markers are high in the first place, with the possible exception of some basic (but often incorrect) counseling on diet and exercise.
On the other hand, functional medicine—which is what I practice—focuses on treating the underlying cause of health problems instead of just suppressing symptoms. If your blood sugar, blood pressure or cholesterol are high, the first question a functional medicine practitioner will ask is “why?” If we can identify the root cause of the problem, and address it at that level, medication is often unnecessary.
To use a simple analogy, if you have weeds in your garden, what happens if you just cut the weeds from the top? They grow right back—and sometimes faster than before! If you really want to get rid of them once and for all, you have to pull them up by their roots.
With this in mind, let’s look at some of the potential causes of elevated LDL particle number. If your LDL-P is high, it makes sense to test for and treat any of the conditions below (with the exception of the last, which is genetic and thus can’t be treated) before—or at least along with—taking pharmaceutical drugs.
Insulin resistance and metabolic syndrome
LDL particles don’t just carry cholesterol; they also carry triglycerides, fat-soluble vitamins and antioxidants. You can think of LDL as a taxi service that delivers important nutrients to the cells and tissues of the body.As you might expect, there’s a limit to how much “stuff” that each LDL particle can carry. Each LDL particle has a certain number of cholesterol molecules and a certain number of triglycerides. As the number of triglycerides increases, the amount of cholesterol it can carry decreases, and the liver will have to make more LDL particles to carry a given amount of cholesterol around the body. This person will end up with a higher number of LDL particles.
Consider two hypothetical people. Both have an LDL cholesterol level of 130 mg/dL, but one has high triglycerides and the other has low triglycerides. The one with the high triglyceride level will need more LDL particles to transport that same amount of cholesterol around the body than the one with a low triglyceride level.
Numerous studies have found an association between increased LDL particle number, and metabolic syndrome. One study measured ApoB, a marker for LDL particle number, in a group of 1,400 young Finns with no established disease. The participants with the highest LDL particle number were 2.8 times more likely to have metabolic syndrome than those with the lowest levels of LDL-P. (1) A much larger study of over 300,000 men also found a strong association between LDL-P and metabolic syndrome and its components (i.e. insulin resistance, abdominal obesity, high blood pressure, etc.). (2)
Poor thyroid function
Poor thyroid function is another potential cause of elevated particle number. Thyroid hormone has multiple effects on the regulation of lipid production, absorption, and metabolism. It stimulates the expression of HMG-CoA reductase, which is an enzyme in the liver involved in the production of cholesterol. (As a side note, one way that statins work is by inhibiting the HMG-CoA reductase enzyme.) Thyroid hormone also increases the expression of LDL receptors on the surface of cells in the liver and in other tissues. In hypothyroidism, the number of receptors for LDL on cells will be decreased. This leads to reduced clearance of LDL from the blood and thus higher LDL levels. Hypothyroidism may also lead to higher cholesterol by acting on Niemann-Pick C1-like 1 protein, which plays a critical role in the intestinal absorption of cholesterol. (3, 4)Studies show that LDL particle number is higher even in subclinical hypothyroidism (high TSH with normal T4 and T3), and that LDL particle number will decrease after treatment with thyroid hormone. (5)
Infections
Another cause of high cholesterol profile is infection. Multiple studies have shown associations between bacterial infections like Chlamydia pneumoniae and H. pylori, which is the bacterium causes duodenal ulcers, and viral infections like herpes and cytomegalovirus and elevated lipids. (6) For example, H. pylori leads to elevated levels of total cholesterol, LDL cholesterol, lipoprotein (a), ApoB or LDL particle number, and triglyceride concentrations as well as decreased levels of HDL. (7)Several mechanisms have been proposed to explain the association between infections and elevated blood lipids. Some evidence suggests that viral and bacterial infections directly alter the lipid metabolism of infected cells, and other evidence suggests that lipids increase as a result of the body’s attempt to fight off infection. Other evidence suggests that LDL has antimicrobial properties and is directly involved in inactivating microbial pathogens. This has been confirmed by studies showing that mice with defective LDL receptors—and thus very high levels of LDL—are protected against infection by gram-negative bacteria like H. pylori. (8)
Leaky gut
One of the primary functions of the intestinal barrier is to make sure that stuff that belongs in the gut stays in the gut. When this barrier fails, endotoxins such as lipopolysaccharide (LPS) produced by certain species of gut bacteria can enter the bloodstream and provoke an immune response. Part of that immune response involves LDL particles, which as I mentioned above, have an anti-microbial effect. A protein called LPS-binding protein, which circulates with LDL particles, has been shown to reduce the toxic properties of LPS by directly binding to it and removing it from the circulation. (9) Studies have also shown significant increases in LPS-binding protein (and thus LDL particles) in cases of endotoxemia—a condition caused by large amounts of circulating endotoxins. (10)Though more research is needed in this area, the studies above suggest that a leaky gut could increase the level of LPS and other endotoxins in the blood, and thus increase LDL particle number as a result. I have seen this in my practice. I recently had a patient with high LDL-P and no other risk factors. I tested his gut and discovered H. pylori and small intestine bacterial overgrowth (SIBO). After treating his gut, his LDL-P came down to normal levels.
Genetics
The final cause of elevated LDL-P is genetics. Familial hypercholesterolemia, or FH, involves a mutation of a gene that codes for the LDL receptor or the gene that codes for apolipoprotein B (ApoB). The LDL receptor sits on the outside of cells; the LDL particle has to attach to the LDL receptor in order to deliver the nutrients it’s carrying and be removed from the circulation. ApoB is the part of the LDL particle that binds to the receptor. If we use a door lock as an analogy, apolipoprotein B would be the key, and the LDL receptor is the lock. They both need to be working properly for LDL to deliver its cargo and to be removed from the bloodstream.Homozygous carriers of FH have two copies of the mutated gene. This condition is very rare. It affects approximately 1 in a million people. And people that are homozygous for this mutation have extremely high total cholesterol levels, often as high as 1000 mg/dL. And unfortunately they usually die from severe atherosclerosis and heart disease before the age of 25.
Heterozygous carriers, however, only have a single copy of the mutated gene, and the other copy is functioning normally. This is much more common. The prevalence is between 1 in 300 to 1 in 500 people, depending on which study you look at. These heterozygous carriers of FH have total cholesterol levels that often range between 350 and 550 mg/dL, along with very high LDL particle number. They have about three times higher risk of death from heart disease than people without FH if it goes untreated.
It’s important to note that people with FH have primarily large, buoyant LDL particles, and yet are still at much higher risk for cardiovascular disease. While it’s true that small, dense, oxidized LDL particles are more likely to cause atherosclerosis, large, buoyant particles can also be harmful when their concentration is high enough. This is one reason why LDL particle number is a superior marker to LDL particle size.
In the next article in this series, I will debunk the myth that statins extend lifespan in healthy people with no pre-existing heart disease.
=================================================================
Read the complete article here.
Wednesday, April 10, 2013
Does Carnitine From Red Meat Contribute to Heart Disease - Masterjohn
Mother Nature Obeyed
A Weston A. Price Blog
In April of 2011, I posted a rebuttal of a Nature paper from Stanley Hazen’s group at the Cleveland Clinic arguing that choline from animal foods causes heart disease:
The press reported on the paper widely, and this New York Times article by Gina Kolata gave it a big boost in popularity:
The single “representative female omnivore” from the Nature Medicine paper excreted similar amounts of TMAO in her urine as the six subjects from the 1999 study after consuming red meat,*** suggesting that, had they measured the response to seafood, the authors of the Nature Medicine paper would also have found much greater excretion of TMAO after consumption of seafood than after consumption of red meat.
In Supplementary Figure 5, we find this schematic and data of one person’s three steak + carnitine challenges:
The legend says this is data for “a representative omnivorous subject” (they do not specify the person’s gender). Prior to antibiotic treatment, shown on the left, the TMAO remained flat over 24 hours after consuming a steak and carnitine supplement. We only see an increase after this omnivore was given antibiotics and his or her intestinal flora grew back over a week, shown on the right, and in that case it didn’t even double after the steak, let alone triple as in Figure 2a. Did this subject develop dysbiosis from the course of antibiotics, and is that why TMAO increased after antibiotics but not before antibiotics?
If, prior to antibiotics, this person’s TMAO remained flat after consuming steak + carnitine, while the TMAO of the omnivore shown in Figure 2a nearly tripled, how can they both be “representative”? Is the data in Supplementary Figure 5 from a male, and does this represent a fundamental difference between males and females? Is the data shown in Figure 2a “representative” of a female omnivore before or after she was given antibiotics? If the latter, does the increase simply represent the effects of antibiotic-induced dysbiosis?
If the labeled TMAO increased after the steak + carnitine challenge but the total pool of TMAO did not, this indicates that carnitine was converted into TMAO, but that the TMAO generated from the carnitine was so small compared to the amount of TMAO already present in the body as to be largely irrelevant.
Finally, we should note that the steak + carnitine challenge provided 180 milligrams of carnitine from meat and 250 milligrams of isotopically labeled carnitine from a supplement. There is no data in this paper showing that TMAO increases in response to steak alone in anyone.

The most impressive thing about this graph that should jump out at us is that the standard error bars for the omnivores cover almost the entire vertical axis of the graph. If you are unfamiliar with statistics and wish to get a sense of how dramatic this degree of variation is, one way would be to scroll up to the data I showed for the 1999 study measuring TMAO generation from 46 different foods, where the bars represent the same measure of variation. The variation in that study was quite large for many foods, but not like this. For all we know, the variation could be driven by a single outlier, meaning perhaps only one omnivore’s labeled TMAO increased and that of the others remained flat. Or, perhaps it represents a large difference between the male and female subjects. With this level of variation, it seems unlikely that there was a statistically significant increase in TMAO among the omnivores at any specific time point, and the authors give no indication that this was so. When they compared the area under each curve, however, the difference was statistically significant.
While this may indicate that meat-eaters as a group generate more TMAO from supplemental carnitine than vegetarians, it is somewhat unclear whether this experiment was confounded by antibiotic treatment, and the authors do not explain whether the result is driven by a single outlier or a fundamental gender difference, neither do they show any results indicating that the total amount of TMAO in the blood (instead of just isotopically labeled TMAO) increased.
Although the largest difference was seen between those with enterotypes 1 and 2, TMAO levels were nevertheless 45 higher among the meat-eaters than among the vegans and vegetarians. There were also significant differences in specific strains of intestinal bacteria between the dietary groups that could hypothetically account for this difference.
While it is possible that intestinal flora accounts for the difference, it is disappointing that the authors did not consider other possibilities, such as differences in the activity of the enzyme that converts trimethylamine to TMAO. For example, vitamin B2 is the main cofactor for the enzyme, and vegans are three times as likely to be deficient in vitamin B2 as vegetarians and omnivores.
To support their hypothesis that the difference in intestinal bacterial metabolism of carnitine can be induced by meat consumption, the investigators fed mice 1.3 percent carnitine in drinking water and showed that this altered intestinal flora and led to a ten-fold increase in the TMAO yield in response to a force-fed carnitine challenge. Before we take this as supporting evidence that people who eat meat have higher TMAO than vegans and vegetarians because of meat-induced changes in intestinal flora, we should consider a couple of caveats.
Suppose each mouse drinks about 5 milliliters of water per day. This would provide 65 milligrams of carnitine per day, more than a third of what could be obtained from eating an eight-ounce steak. Adjusting for body weight, this is like a human eating a thousand steaks per day. This is beyond the capacity of even the most die-hard meat-lovers.
Moreover, the bacterial species that showed up in greater concentrations in carnitine-fed mice and correlated with TMAO levels had no correspondence to those found in meat-eating humans. The authors put it this way:
While antibiotics wipe out TMAO levels in humans and mice, showing that intestinal bacteria are necessary for its formation, the authors provide no clear evidence that the specific differences in intestinal bacteria between vegetarians and vegans on the one hand and meat-eaters on the other cause the observed difference in TMAO levels.
It is unclear whether the 45 percent higher TMAO levels in meat-eaters represents something that we should regard as “unhealthy.” As I pointed out above, for all we know it could be due to riboflavin (vitamin B2) deficiency among the vegans. If we suppose for the sake of argument, however, that it does represent something unhealthy, there is no reason to connect it to the consumption of meat. As Chris Kresser pointed out in his critique of the Nature Medicine paper, most comparisons between vegetarians and omnivores are confounded by substantial lifestyle differences between these two groups. They are also confounded by dietary differences that have nothing to do with meat, such as the consumption of fruits and vegetables. While the possibility that long-term meat-eating itself increases TMAO levels remains a legitimate hypothesis to be investigated, equal investigation should be given to alternative hypotheses focusing on other dietary and lifestyle factors that differ between vegetarians and omnivores.
Their argument was that our intestinal bacterial convert choline to trimethylamine, which our livers then convert to trimethylamine oxide (TMAO), which causes atherosclerosis in mice, and thus, by extension, probably in humans. I pointed out that previous studies have shown that supplements with salts of free choline do in fact generate TMAO, but uncontaminated phosphatidylcholine, the main form of choline found in food, does not. Moreover, choline-rich foods like liver and eggs did not produce more TMAO than a control breakfast, but seafood, which is generally contaminated with some trimethylamine, did.
In a new paper in Nature Medicine, these authors have expanded their argument to claim that the carnitine in red meat contributes to heart disease through the same pathway. Put on your seat belts, folks, and let’s take a look!
The new paper can be found here:
In brief, here is the “clean version” of the story. The authors showed that eating a steak increased blood and urine levels of TMAO in five omnivores, whereas the same meal did not have this effect in a vegan. Furthermore, carnitine supplements increased blood TMAO in five omnivores, but not in five vegetarians and vegans. Baseline blood levels of TMAO were also higher in 30 omnivores than in 23 vegetarians and vegans, as were the levels of certain strains of intestinal bacteria. Antibiotics suppressed TMAO levels in five omnivores, showing the role of intestinal flora in its generation. Plasma concentrations of carnitine and TMAO correlated with atherosclerosis in just under 2,600 humans, and, like they had previously shown for choline, carnitine produced atherosclerosis in female mice genetically engineered to be vulnerable to that disease, but not when the mice were kept germ-free with antibiotics.
Overall, parts of this study are very well conducted, providing insights into metabolism that should fascinate anyone who loves biochemistry for its own sake and doesn’t mind meandering down rabbit holes that have no clear relevance to the health of humans or natural strains of animals. The problems with this study and its portrayal in the media are the often-times incomplete reporting of data in the paper and the wild runaway inferences published all over the press, particularly the conclusion that red meat contributes to heart disease by generating TMAO, and the even stranger notion that we should eat less red meat for this reason. Let’s take a look at the less “clean” version of the story.
Why Single Out Red Meat?
First of all, why pick on red meat? As I pointed out in my last post on this topic, lots of foods increase TMAO in humans and red meat does not stand out among them. A 1999 study in six human volunteers evaluated excretion of trimethylamine and TMAO after consumption of a handful of supplements and 46 different foods. For comparison, the new paper in Nature Medicine reported data for one food (red meat) fed to two (urine data) or six volunteers (plasma data). Consistent with a 1983 finding from the group of famed choline researcher Steven Zeisel that salts of free choline but not uncontaminated phosphatidylcholine (lecithin) generated trimethylamine, this group found that choline and carnitine, but not lecithin, generated TMAO. Carnitine-rich foods, however, like red meat, produced no more TMAO than common fruits and vegetables. Seafoods, by contrast, led to large increases in TMAO. Let’s take a look at some of this data.
The authors compared eight ounces of 46 foods to a “light breakfast” with no seafood, which acted as a control. It would appear from the data that the “light breakfast,” which the authors did not describe any further, generated some TMAO. In each graph below, an asterisk indicates a statistically significant difference between the food in question and the control breakfast. Statistical significance relative to the control should not be taken as a criterion for assuming the food generated TMAO, but should rather be taken to mean that the food actually stands out relative to other foods as a source of TMAO.*
Here’s a comparison between the control, beef, and a variety of fruits and vegetables:
We can see that none of these foods statistically stands out from the control. Looking at the numbers alone, this “light breakfast,” along with carrots, cauliflower, peanuts, peas, potatoes, soybeans, and tomatoes generated more trimethylamine and TMAO than beef. In general, we could say that there is no clear evidence that beef produces more or less TMAO than any of the fruits and vegetables tested.
Here we see that none of the meats tested were statistically different from the “light breakfast” control (numerically, all of them except lamb liver were lower), and that there is no relation to the “redness” of the meat, with chicken having an almost identical value to beef:
Here we see that mushrooms and an assortment of grain and dairy products are statistically no different from the “light breakfast” control, and that bread, mushrooms, cheese and eggs all produced numerically (but not statistically) higher values than beef:
Now here’s the real kicker. What foods do stand out as supreme sources of TMAO? Seafoods! Let’s take a look at these invertebrates first:
Here we see that, unlike beef, all the invetebrate seafoods tested except cockles produced statistically significantly more TMAO than the “light breakfast” control. Based on my own statistical test,** all of the seafoods shown in the graph except clams and cockles produced significantly more TMAO than beef.
Now let’s take a look at fin fish:
All the fish except trout produced statistically more TMAO than the “light breakfast” control. My own statistical analysis** indicates that all the fish except tuna, trout, plaice, and the two samples of roe produced significantly more TMAO than beef.
The difference between seafoods and red meat in the 1999 paper is like the difference between night and day. To take the most extreme example, halibut generated over 107 times as much TMAO as red meat. It seems obvious from this study that if any foods should be singled out for the production of TMAO, it should be seafoods. Yet the Nature Medicine paper makes no mention of fish and the New York Times article only mentions fish to point out that it has less carnitine than red meat (and thus, by inference, will generate less TMAO, though that is clearly not the case, presumably because seafood tends to be contaminated with trimethylamine itself).
If we are to single out red meat as a source of TMAO, we should be able to identify other foods with which it should be replaced that generate less TMAO. Yet this 1999 study, which had a small sample size but tested an expansive number of foods, found that there basically are no other foods that generate meaningfully less TMAO than red meat.
Do Meat-Eaters Generate More TMAO From Steak Than Vegans?
Do meat-eaters produce more TMAO from steak than vegans? The “clean” version of the story is, as described in the New York Times, “the answers were: yes, there was a TMAO burst in the five meat eaters; and no, the vegan did not have it.” The data presented in the Nature Medicine paper are less clear.
First, as I’ll explain in more detail below, no one ate steak alone. They ate steak with 250 milligrams of supplemental carnitine.
It certainly seems from Figure 2a, shown above, that the single “representative female omnivore” whose data is shown had a greater TMAO increase after consuming steak + carnitine than the one male vegan they were able to convince to eat the same meal. The vegan had no increase and the omnivore’s levels roughly tripled. Since the sample size is one per group, the authors did not report a statistical analysis, so we cannot make any comparison between “omnivores” as a group and “vegans” as a group.
Besides this, this same group has previously shown that the enzyme responsible for converting trimethylamine to TMAO is suppressed by androgens, and its activity is low in males compared to females. Thus, comparing a female omnivore to a male vegan is misleading.
In any case, it’s not so clear once we look at the supplementary figures, or once we read the main text, how “representative” this female omnivore actually was.
If, prior to antibiotics, this person’s TMAO remained flat after consuming steak + carnitine, while the TMAO of the omnivore shown in Figure 2a nearly tripled, how can they both be “representative”? Is the data in Supplementary Figure 5 from a male, and does this represent a fundamental difference between males and females? Is the data shown in Figure 2a “representative” of a female omnivore before or after she was given antibiotics? If the latter, does the increase simply represent the effects of antibiotic-induced dysbiosis?
As mentioned above and as can be seen in the top of Supplementary Figure 5, moreover, the subjects did not simply consume steak. Along with the steak, the authors fed carnitine labeled with a heavy isotope (d3), which is like a chemical tag that allowed the investigators to trace its metabolism. If they observed labeled TMAO in the blood, this would show that the carnitine was converted to TMAO. Indeed, they showed this in a single “representative female omnivorous subject” in Figure 1e. But the amount of labeled TMAO in the blood would be tiny compared to the total amount of TMAO. If we are evaluating the plausibility of the hypothesis that TMAO in the blood contributes to heart disease, we care about the total amount of TMAO. The question, then, is whether eating steak leads to a meaningful increase in total TMAO. Here is what the authors had to say:
In most subjects examined, despite clear increases in plasma d3-carnitine and d3-TMAO concentrations over time (Fig. 1e), post-prandial changes in endogenous (unlabeled) carnitine and TMAO concentrations were modest (Supplementary Fig. 5), consistent with total body pools of carnitine and TMAO that are relatively very large in relation to the amounts of carnitine ingested and TMAO produced from the carnitine challenge.It is unclear what “modest” means in this context. Nowhere appear any data for the entire group of omnivores. We just have a “represenatative” graph in Supplementary Figure 5 where the TMAO increase is non-existent, not “modest,” prior to antibiotics, and another “representative” graph in Figure 2a where the result is very different. Since both relevant graphs have a sample size of one, there is no statistical analysis. The authors seem to be saying in the above paragraph, however, that, on the whole, the non-existent increase in total TMAO shown in Supplementary Figure 5 is more representative than the large increase shown in Figure 2a.
If the labeled TMAO increased after the steak + carnitine challenge but the total pool of TMAO did not, this indicates that carnitine was converted into TMAO, but that the TMAO generated from the carnitine was so small compared to the amount of TMAO already present in the body as to be largely irrelevant.
Finally, we should note that the steak + carnitine challenge provided 180 milligrams of carnitine from meat and 250 milligrams of isotopically labeled carnitine from a supplement. There is no data in this paper showing that TMAO increases in response to steak alone in anyone.
Does Carnitine Increase TMAO More in Meat-Eaters Than in Vegans and Vegetarians?
After these investigators gave five meat-eaters antibiotics to show that suppressing intestinal flora would suppress TMAO, they gave five vegetarians and vegans and five omnivores a labeled carnitine supplement without any steak. It is unclear whether these omnivores are the same omnivores who previously underwent three steak + carnitine challenges, involving the use of antibiotics. In one section of the methods, the omnivores who received antibiotics are described as “additional omnivores,” but in another section they seem to be described as a “subset of subjects” who participated in the carnitine alone challenge. If they are the same omnivores, then this experiment is seriously confounded since the investigators never gave any vegetarians antibiotics. In any case, here we encounter a graph that actually includes all ten subjects instead of a “representative” subject from each group:
The most impressive thing about this graph that should jump out at us is that the standard error bars for the omnivores cover almost the entire vertical axis of the graph. If you are unfamiliar with statistics and wish to get a sense of how dramatic this degree of variation is, one way would be to scroll up to the data I showed for the 1999 study measuring TMAO generation from 46 different foods, where the bars represent the same measure of variation. The variation in that study was quite large for many foods, but not like this. For all we know, the variation could be driven by a single outlier, meaning perhaps only one omnivore’s labeled TMAO increased and that of the others remained flat. Or, perhaps it represents a large difference between the male and female subjects. With this level of variation, it seems unlikely that there was a statistically significant increase in TMAO among the omnivores at any specific time point, and the authors give no indication that this was so. When they compared the area under each curve, however, the difference was statistically significant.
While this may indicate that meat-eaters as a group generate more TMAO from supplemental carnitine than vegetarians, it is somewhat unclear whether this experiment was confounded by antibiotic treatment, and the authors do not explain whether the result is driven by a single outlier or a fundamental gender difference, neither do they show any results indicating that the total amount of TMAO in the blood (instead of just isotopically labeled TMAO) increased.
Do Omnivores Have Higher TMAO Than Vegetarians and Vegans Because of Meat-Induced Changes in Intestinal Bacteria?
Among 23 vegans and vegetarians and 30 omnivores, the authors reported differences in intestinal bacteria that they tied to blood levels of TMAO in the absence of a steak or carnitine challenge. The most dramatic difference seen was a roughly three-fold greater level of TMAO in the blood of four subjects with “enterotype 2,” with bacterial DNA from Prevotella species dominating their feces, when compared to 49 subjects with “enterotype 1,” with bacterial DNA from Bacteroides species dominating their feces. As the authors note in the discussion, enterotype 2 had previously been associated with “low animal-fat and protein consumption,” but three out of four subjects with this enterotype in the current study were omnivores.Although the largest difference was seen between those with enterotypes 1 and 2, TMAO levels were nevertheless 45 higher among the meat-eaters than among the vegans and vegetarians. There were also significant differences in specific strains of intestinal bacteria between the dietary groups that could hypothetically account for this difference.
While it is possible that intestinal flora accounts for the difference, it is disappointing that the authors did not consider other possibilities, such as differences in the activity of the enzyme that converts trimethylamine to TMAO. For example, vitamin B2 is the main cofactor for the enzyme, and vegans are three times as likely to be deficient in vitamin B2 as vegetarians and omnivores.
To support their hypothesis that the difference in intestinal bacterial metabolism of carnitine can be induced by meat consumption, the investigators fed mice 1.3 percent carnitine in drinking water and showed that this altered intestinal flora and led to a ten-fold increase in the TMAO yield in response to a force-fed carnitine challenge. Before we take this as supporting evidence that people who eat meat have higher TMAO than vegans and vegetarians because of meat-induced changes in intestinal flora, we should consider a couple of caveats.
Suppose each mouse drinks about 5 milliliters of water per day. This would provide 65 milligrams of carnitine per day, more than a third of what could be obtained from eating an eight-ounce steak. Adjusting for body weight, this is like a human eating a thousand steaks per day. This is beyond the capacity of even the most die-hard meat-lovers.
Moreover, the bacterial species that showed up in greater concentrations in carnitine-fed mice and correlated with TMAO levels had no correspondence to those found in meat-eating humans. The authors put it this way:
Notably, a direct comparison of taxa associated with plasma TMAO concentrations in humans versus in mice failed to identify common taxa. These results are consistent with prior reports that microbes identified from the distal gut of the mouse represent genera that are typically not detected in humans.For both of these reasons, the carnitine-fed mice provide little in the way of justification for viewing the differences in intestinal flora between vegetarians and omnivores as a result of consumption or abstention from meat.
While antibiotics wipe out TMAO levels in humans and mice, showing that intestinal bacteria are necessary for its formation, the authors provide no clear evidence that the specific differences in intestinal bacteria between vegetarians and vegans on the one hand and meat-eaters on the other cause the observed difference in TMAO levels.
It is unclear whether the 45 percent higher TMAO levels in meat-eaters represents something that we should regard as “unhealthy.” As I pointed out above, for all we know it could be due to riboflavin (vitamin B2) deficiency among the vegans. If we suppose for the sake of argument, however, that it does represent something unhealthy, there is no reason to connect it to the consumption of meat. As Chris Kresser pointed out in his critique of the Nature Medicine paper, most comparisons between vegetarians and omnivores are confounded by substantial lifestyle differences between these two groups. They are also confounded by dietary differences that have nothing to do with meat, such as the consumption of fruits and vegetables. While the possibility that long-term meat-eating itself increases TMAO levels remains a legitimate hypothesis to be investigated, equal investigation should be given to alternative hypotheses focusing on other dietary and lifestyle factors that differ between vegetarians and omnivores.
Does TMAO Cause Heart Disease?
Female C56BL/6J mice genetically engineered to be missing ApoE, an important protein involved in lipoprotein metabolism, developed twice as much atherosclerosis when fed a thousand steaks a day worth of carnitine. This and supplementary studies feeding mice TMAO suggested that TMAO derived from dietary carnitine may suppress the removal of cholesterol from the immune cells that populate atherosclerotic plaques. As proof of principle, these studies may have some value, but their relevance is questionable. Such an exorbitant amount of carnitine is surely irrelevant to human meat intake. The mice, moreover, are among the most vulnerable. They presumably used females because males convert trimethylamine to TMAO at a lower rate. ApoE knockout mice not only lack a critical protein that humans have, but the C56BL/6J background strain of mice, as I’ve written about before, has a deletion in a gene related to B vitamin and glutathione metabolism that prevents the mice from recycling glutathione in the presence of oxidative stress.
Can such a result be observed in male mice, in mice without these genetic defects, and in mice fed attainable quantities of carnitine? Without knowing the answers even to these preliminary questions, it seems unreasonable to consider these experiments relevant to human health at this stage of the game.
The authors also investigated the relationship between plasma carnitine levels and heart disease in just under 2600 humans undergoing elective cardiac evaluation. Males had higher carnitine levels than females. In the lowest quartile of carnitine status, only 54 percent of subjects were male. In the highest quartile, 80 percent were male. Those who had the highest carnitine levels were more likely to smoke (77 percent) than those who had the lowest (61 percent). The majority of the subjects were on ACE inhibitors, beta-blockers, statins, and aspirin. Those with higher carnitine levels had higher cardiovascular disease, peripheral artery disease, and cardiovascular disease. Statistical adjustment for traditional cardiovascular risk factors attenuated the associations. We can imagine that if it were possible to identify all of the confounding factors, further statistical adjustment would further reduce and perhaps eliminate the association.
The authors provide no evidence that the variation of plasma carnitine in these subjects primarily reflects variations in dietary carnitine intake, and there is no particular reason to assume this. To offer one counter-example, in guinea pigs, one of the few experimental animals that have a dietary vitamin C requirement like humans do, vitamin C deficiency leads to a loss of carnitine from muscle and an increase in plasma carnitine. Vitamin C probably protects against heart disease by preventing lipoprotein oxidation in the blood and by promoting collagen synthesis in arterial plaques, which protects them from rupture. Perhaps plasma carnitine is an inverse marker of vitamin C status.
In a separate analysis, blood levels of carnitine appeared to associate with cardiovascular events only in the presence of high blood levels of TMAO. This is consistent with the authors’ hypothesis that carnitine contributes to cardiovascular disease through its conversion to TMAO, but it could be consistent with a number of other hypotheses as well. Perhaps blood levels of TMAO reflect intestinal dysbiosis, variations in the activity of the enzyme that converts trimethylamine to TMAO (as I wrote in my last post on this topic, activity of the enzyme could reflect drug exposure, genetically determined drug efficacy, iron overload, ethnicity, or other factors), or perhaps TMAO increases in heart disease to play important physiological roles such as protein stabilization.
This study provides a foundation for future studies to investigate whether TMAO can be used as an independent predictor of heart disease risk and whether TMAO and carnitine status can be used as markers of clinically relevant metabolic changes, but it hardly provides us with a basis for believing that carnitine from fewer than a thousand steaks per day causes heart disease through its conversion to TMAO.
The Bottom Line
The bottom line here is that the popular interpretation of this study as an indictment of red meat makes no sense. Even if physiological levels of TMAO contribute to heart disease in humans (which is a big “if” at this point) and even if red meat were to raise TMAO substantially more than most other foods (which appears to be false), it wouldn’t in any way whatsoever follow that eating red meat causes heart disease. The biological effects of a food cannot possibly be reduced to one of the biological effects of one of the food’s components. Believing such a thing would require believing not only that the particular component has no other relevant biological effects, but that there are no relevant biological effects of any of the other tens of thousands of components of that food.
As Chris Kresser pointed out today, the balance of epidemiological evidence fails to show an association between fresh, unprocessed red meat and heart disease. Numerous studies, including randomized trials, have suggested that carnitine supplementation improves outcomes in patients with cardiovascular disease. Carnitine thus may be a generally heart-protective nutrient. The authors acknowledge these studies in their discussion but suggest that carnitine may have conflicting effects, especially when used orally rather than intravenously as in some studies, since the oral route allows exposure to intestinal bacteria.
If the carnitine in red meat were promoting atherosclerosis through its conversion to TMAO, however, then red meat should be no more dangerous than potatoes and carrots and the real killer should be seafood. How likely is this to be true? Prospective studies correlate fish consumption with a reduced risk of heart disease mortality. Some Pacific Island groups that subsist largely on seafood, such as the Kitavans, appear to be free of heart disease. Randomized trials have tended to focus on fish oils rather than whole fish. Those testing advice to eat more fish are ambivalent, but they don’t seem to suggest that eating whole fish increases the risk of heart disease.
The elucidation of nutritional pathways and biochemistry in this paper is interesting, but it shouldn’t serve as a reason to avoid red meat.
Acknowledgments
Thanks to Chris Kresser, Stephan Guyenet, Ned Kock, and Peter Attia for discussing some of the points made in this post.Notes
* Of course it would be better if we could see these foods and the control breakfast compared to a control of pure water or something that should be similarly ineffective at generating TMAO. A certain proportion of the TMAO excreted in the urine could perhaps be due to endogenous trimethylamine precursors circulated through the gastrointestinal tract. Nevertheless, this should be similar across foods.
** One-way ANOVA using Dunnet’s post-test to compare all values to beef and adjust for multiple comparisons, using Graphpad Prism 5.
*** Did these subjects generate substantially less TMAO from red meat than the subjects in the new Nature Medicine paper? It would seem not. The Nature Medicine paper reports urinary TMAO excretion in different units, and it reports TMAO alone rather than the sum of it and its precursor, trimethylamine. Nevertheless, according to my calculations, the “representative female omnivore” excreted a little under 212 micromoles/8 hours, whereas the average excretion after eight ounces of beef in the 1999 study was 76.5 micromoles/8 hours, indicating perhaps slightly higher but more or less similar generation of TMAO after red meat between the studies, especially considering the variation in responses in the 1999 study (SD 48.5) and compared to seafood.
Assuming the average person clears about 1 mg creatinine into their urine per minute (480 mg/min) and 113.12 g/mol creatinine (thus 480 mg/1000 mg/g and divided by the molar mass, multipled by 1000 to convert mol to mmol, yielding an average excretion of 4.24 mmol creatinine in 8 hours), I calculate that just under 50 mmol TMAO/mol creatinine, as shown in Fig 2b of the Nature Medicine paper converts to 212 umol/8 h (50 mmol TMAO/mol creatinine * 1 mol creatinine/1000 mmol creatinine *4.24 mmol creatinine/8 hours * 1000 umol/TMAO/mol TMAO).
============================================================
Red Meat and trimethylamine N-oxide - Kresser
Red Meat and TMAO: Cause for Concern, or Another Red Herring?
I’m sure many of you have seen reports on a recent study published in the journal Nature suggesting a possible mechanism linking red meat consumption to heart disease. The day after one such report was published in the New York Times, I received numerous emails and numerous Facebook and Twitter messages from concerned red meat enthusiasts. This is understandable, but rest assured it’s not yet time to switch over to soy burgers.
The researchers in this study published a paper a while back proposing that a chemical called TMAO (trimethylamine N-oxide) increases the risk of heart disease. In this study, they hypothesized that eating red meat may increase levels of TMAO in the bloodstream, which would intern ramp up your chances of having a heart attack. Sounds plausible, right?
There’s another hypothesis that also seemed plausible for why red meat increases the risk of heart disease (if we even accept that, which I do not; more on this in a moment). It’s called the “diet-heart hypothesis”, and you’re all very well aware of it whether you know it by name or not. It holds that eating cholesterol and saturated fat increase cholesterol levels in the blood, and high cholesterol levels in the blood cause heart disease. This theory became so widely accepted that few people even question it anymore. The problem is it’s simply not true. Recent research has shown that dietary saturated fat and cholesterol are not associated with heart disease after all, and even if they were, high cholesterol levels in the blood are not the culprit. I’ve written about this extensively in the past, and I will be starting a brand new series with updated information this month.
The mistaken blame of saturated fat and cholesterol as drivers of heart disease led to a decades-long campaign to encourage low-fat, high-carbohydrate diets. Unfortunately, the effects of this campaign were not harmless. Not only did it unnecessarily deprive people of nutrient-dense, nourishing (and delicious!) foods like meat, butter and eggs, it may have indirectly contributed to the epidemics of obesity, heart disease and diabetes. Studies have shown that when people replace saturated fat with carbohydrates, the risk of heart disease doesn’t go down—it goes up. (1) This is not because of the carbohydrates, per se, but because 85% of the grain consumed in the U.S. is in the highly refined form. (2)
The diet-heart hypothesis should be a cautionary tale that prevents us from jumping to rash conclusions based on limited evidence. Alas, the almost complete lack of criticism or scrutiny in the popular media reports on this study indicate that caution has been thrown to the wind. Let’s now examine three reasons why I’m not yet ready to take the conclusions of this study (i.e. red meat causes heart disease via TMAO) at face value.
Epidemiological evidence is inconsistent
If red meat consumption elevates TMAO, and elevated TMAO increases the risk of heart disease, we’d expect to see higher rates of heart disease in people that eat more red meat. The epidemiological evidence examining this question is mixed. A large meta-analysis published in Circulation by Micha et al. covering over 1.2 million participants found that consumption of fresh, unprocessed red meat is not associated with increased risk of coronary heart disease (CHD), stroke or diabetes. (3) On the other hand, a smaller prospective study including about 121,000 participants from the Nurses Health Study and Health Professionals Follow-up Study did find an association between red meat consumption (both fresh and processed) and total mortality, cardiovascular disease (CVD) and cancer. (4)
If eating meat increases heart disease risk we might expect lower rates in vegans and vegetarians. Early studies suggested this was true, but later, better-controlled studies suggest it’s not. The early studies were poorly designed and subject to confounding factors (i.e. vegetarians tend to be more health conscious on average than general population, so there could be other factors explaining their longevity, such as more exercise, less smoking, etc.). Newer, higher quality studies that have attempted to control for these confounding factors haven’t found any survival advantage in vegetarians. For example, one study compared the mortality of people who shopped in health food stores (both vegetarians and omnivores) to people in the general population. They found that both vegetarians and omnivores in the health food store group lived longer than people in the general population. (5) This suggests, of course, that eating meat in the context of a healthy diet does not have the same effect as eating meat in the context of an unhealthy diet. (Hold this thought: we’ll be coming back to it shortly.) A very large study performed in the U.K. in 2003 including over 65,000 subjects corroborated these results: no difference in mortality was observed between vegetarians and omnivores. (6)
Taken together, these data do not suggest a strong relationship between red meat and heart disease. It’s also crucial to remember that epidemiological evidence does not prove causality. Even if red meat intake is associated with a higher risk of CVD (or any other health problem), such studies don’t tell us that red meat is causing the problem. If you’re new to this concept, I suggest reading these excellent articles by Denise Minger and Chris Masterjohn.
The “healthy user bias” strikes again
The healthy user bias is the scientific way of explaining the phenomenon I described above, where people that engage in one behavior that is perceived as healthy (whether it is or not) are more likely to engage in other behaviors that are healthy. (7, 8) Of course the flip-side is also true: those that engage in behaviors perceived to be unhealthy are more likely to engage in other unhealthy behaviors. The healthy user bias is one of the main reasons it’s so difficult to infer causality from epidemiological relationships. For example, say a study shows that eating processed meats like bacon and hot dogs increases your risk of heart disease. (9) Let’s also say, as the healthy user bias predicts, that those who eat more bacon and hot dogs also eat a lot more refined flour (hot dog and hamburger buns), sugar and industrial seed oils, and a lot less fresh fruits, vegetables and soluble fiber. They also drink and smoke more, exercise less and generally do not take care of themselves very well. How do we know, then, that it’s the processed meat that is increasing the risk of heart disease rather than these other things—or perhaps some combination of these other things and the processed meat? The answer is, we don’t. Good studies attempt to control for some of these confounding factors, but inevitably some will not be controlled for. And one of the most important potential confounding factors that is never controlled for is the gut microbiome.
Numerous studies, which I’ve written about on this blog and spoken about on my podcast, suggest that the balance of bacteria in our gut may be one of the most important factors—if not the most important—that determines our overall health. Gut dysbiosis (an imbalance between healthy and unhealthy bacteria in the gut) and small intestine bacterial overgrowth (SIBO, a condition involving an inappropriate overgrowth of bacteria in the gut) have been linked to health problems as diverse as skin disease, depression, anxiety, autoimmunity, and hair loss.
The study we’re discussing here found that those who eat red meat produce TMAO, whereas vegans and vegetarians who hadn’t eaten meat for at least a year do not. The researchers claimed that this means eating red meat must alter the gut flora in a way that predisposes toward TMAO production. However, there’s another explanation that I believe is much more plausible: the red meat eaters are engaging in unhealthy behaviors that have led to dysbiosis and/or SIBO. This could include eating fewer fruits and vegetables and less soluble fiber, and more processed and refined flour, sugar and seed oils. All of these behaviors have been shown to be more common in the “average” red meat eater, and all of them have been associated with undesirable changes in the gut microbiota. (10, 11, 12) In other words, the problem isn’t the red meat, it’s the gut bacteria. This is supported by the finding in the study that the red meat eaters did not produce TMAO after a course of antibiotics. It is also supported by data indicating that a breakdown in the intestinal barrier, which occurs in dysbiosis and SIBO, may increase heart disease risk by elevating the number of circulating LDL particles in the bloodstream. (13) I will be covering this (i.e. the connection between LDL particles and heart disease) in my updated series on heart disease.
In the last section I presented evidence suggesting that eating meat in the context of a healthy diet does not have the same effect as eating it in the context of an unhealthy diet. This study is likely yet another example. In order to know whether red meat is really to blame for changes in the gut flora that increase TMAO production, we’d have to do another study with two groups: one that follows a Paleo diet rich with fruits, vegetables and soluble fiber, as well as red meat; and another vegan/vegetarian diet with equivalent amounts of plant matter and no meat. If the Paleo diet followers still had higher levels of TMAO, this hypothesis would be a lot stronger.
The jury is still out on TMAO
The evidence linking TMAO production to eating red meat, and serum TMAO levels to heart disease, is not as cut-and-dry as the study authors suggest. For example:
- The Nature paper on TMAO contained data from two studies: an epidemiological study on humans, and a clinical study on mice. The human study compares a single vegan that they managed to convince to eat a steak to a single “representative” meat-eater. A single person in each group is not an adequate sample size, and is hardly convincing given the wide variation in the response to carnitine (see next bullet) among meat-eaters.
- The mouse study used a carnitine supplement. While it is well established that free carnitine increases TMAO production, previous studies have not shown that carnitine-rich foods like red meat increase TMAO. In fact, in one 1999 study, out of 46 different foods tested, including red meat, only one food elevated TMAO levels in the participants: seafood (see graph to right, from Chris Masterjohn’s article referenced below). This makes perfect sense since trimethylamine occurs naturally in seafood. Does this mean we should cut back on fish and shellfish because they’re going to give us a heart attack?(15)

Another obvious question we should ask is whether there are alternative explanations for why we see elevated TMAO levels in meat or seafood eaters (if indeed we do see them in a wide sample of meat eaters, which at least one earlier study didn’t support)? According to a 2011 article by Chris Masterjohn touching on TMAO in a different context: (16)
Elevated TMAO could reflect dietary trimethylamine or TMAO from seafood, but it could also reflect impaired excretion into the urine, or enhanced conversion of trimethylamine to TMAO in the liver.As you can see, it’s overly simplistic to suggest that eating red meat causes elevated TMAO; there are many other factors at work.
The enzyme Fmo3 carries out this conversion, mainly in the liver, as reviewed here. There are a number of genetic variants affecting the activity of this enzyme, some of which appear only in certain ethnicities, and the enzyme also processes a number of drugs used to treat psychoses, infections, arthritis, gastro-esophageal reflux disease (GERD), ulcers, and breast cancer. Iron or salt overload may also increase the activity of the enzyme. TMAO could, then, be a marker for ethnicity, drug exposure, genetically determined drug efficacy, or other conditions.
But even if Paleo meat eaters have higher TMAO levels than vegans and vegetarians, we still don’t have evidence proving a causal relationship between TMAO and CVD. Once again, the supposed link between cholesterol and saturated fat and heart disease should serve as a reminder not to jump to hasty conclusions that unnecessarily deprive people of nutrient-dense, healthy foods. It is virtually impossible to control for all of the possible confounding factors, and the study we’re discussing in this article only further highlights this problem.
Conclusions
I’d like to end with an observation from the discussion section of the TMAO paper. The authors state:Numerous studies have suggested a decrease in atherosclerotic disease risk in vegan and vegetarian individuals compared to omnivores; reduced levels of dietary cholesterol and saturated fat have been suggested as the mechanism explaining this decreased risk. Notably, a recent 4.8-year randomized dietary study showed a 30% reduction in cardiovascular events in subjects consuming a Mediterranean diet (with specific avoidance of red meat) compared to subjects consuming a control diet.This might sound like damning evidence against red meat. However, when you look at Table One in Mediterranean Diet trial, you’ll find that the Mediterranean diet allowed more red meat than the control diet (a low-fat diet)! The Mediterranean Diet allowed for “one serving or less of red or processed meat per day“, whereas the low-fat diet only permitted “one serving or less of red or processed meat per week“. (You can see this for yourself. Click here to access the PDF version of the study, then scroll down to Table One.) Clearly this paper does not support the authors’ conclusion that red meat increases the risk of heart disease.
They also claim that vegan and vegetarian diets reduce the risk of atherosclerotic disease compared to omnivorous diets; but the studies they reference fail to adequately control for the “healthy user bias”.
The study I mentioned in the beginning of this article compared heart disease risk amongst omnivores and vegetarians that shop at health food stores (which is a big step toward reducing healthy user bias), and did not find a difference in deaths from heart disease, stroke or all causes.
If you read the media reports and full-text of this study, you might have noticed something interesting. The study itself, and even most of the media article about it, quite simply and without much fanfare stated that saturated fat and cholesterol have little to do with the supposed increase in heart disease observed with red meat consumption. Hold the press! Shouldn’t THAT be front-page news?!? Apparently not. Of course, they’re only willing to admit this publicly in the context of an article where they’re proposing yet another mechanism for how red meat will kill you.
Finally, the most remarkable and sad part of this for me is seeing just how deep most people’s fear and distrust of red meat is, even if they’ve been following a Paleo diet for a long time. The day after the TMAO study was published, I woke up to no fewer than 20 emails and the same number of Facebook messages and Tweets from people expressing concern that their choice to eat red meat might be killing them. It really is a testament to the power of brainwashing. Most of us grew up with the idea that red meat is harmful, and it’s perhaps not so easy to leave that behind—even when you think you have.
Chris Masterjohn is working on a detailed analysis of the data from this paper, which should be ready soon. I believe we may be seeing more “red meat is bad because of TMAO” studies in the near future, so as always, when you see a media report on such a study, take it with a heavy grain of salt (which, by the way, doesn’t cause high blood pressure in most people!).
=================================================================
Read the complete article here.
Also read more here.
Monday, April 8, 2013
Does Red Meat Cause Inflammation? - Kresser
By Chris Kresser on April 5, 2013

So far in my series on red meat, I’ve discussed why red meat is good for you and why grass fed is a better choice than grain fed. We now know that red meat is a healthy choice, due to its high nutritive value and superior fatty acid profile among other reasons. In the comments on these posts, however, I’ve noticed a few readers have mentioned other components in red meat that are concerning, due to evidence for the potential for inflammation or carcinogenesis.
Yet is this evidence strong enough to advise a reduction in red meat, or is this yet another false alarm creating unnecessary fear of eating meat?
Red meat and inflammation: another myth bites the dust.Two different controlled trials have measured inflammation markers in response to increased red meat intake, and both have found that red meat does not elevate these markers. The first study concludes that increasing red meat consumption by replacing carbohydrates in the diet of non-anemic individuals actually reduces markers of inflammation. (1) The other study showed that in anemic women, inflammation markers on a diet high in red meat were not significantly different from those on a diet high in oily fish. (2) This evidence suggests that red meat is not more inflammatory than other meats for most people, and is potentially less inflammatory than dietary carbohydrates.
However, I’d like to discuss a couple of other specific mechanisms that are often blamed for inflammation.
Neu5Gc
Despite the lack of controlled trials demonstrating that red meat is inflammatory, there has been recent concern over a compound in red meat called Neu5Gc. (3) Neu5Gc is a monosaccharide that acts as a type of signaling molecule in mammalian cells, and one of its functions is to help the immune system distinguish between ‘self’ cells and ‘foreign’ cells. (4) Humans lost the ability to produce Neu5Gc millions of years ago through a genetic mutation, although we still produce the closely related compound Neu5Ac. (5) Humans are unique in this respect, because most other mammals still produce Neu5Gc, which is why that compound is found in mammalian meat.When humans consume red meat and milk products, we incorporate some of this compound into our own tissues, especially tissues that grow at a fast pace such as fetuses, epithelial and endothelial tissue, and tumors. (6) The concern is that most of us also have anti-Neu5Gc antibodies circulating in our blood, and some researchers have suggested that these antibodies react with the Neu5Gc in our tissues to create chronic inflammation, leading to chronic diseases such as cancer.
The problem is that researchers are nowhere near proving that hypothesis. Research is in the very earliest stages, and while some fascinating hypotheses involving this molecule are being generated, the studies needed to confirm or refute these hypotheses are nonexistent. Most of the studies done on the topic acknowledge that at this point, any role in chronic inflammation is speculative, but many who have cited their research neglect to acknowledge that limitation. Thus begins a new round of fear mongering at the expense of red meat.
In the absence of conclusive evidence one way or another, it can be helpful to remember that red meat has been part of the human diet for much of our history, and remains an important dietary element of many healthy cultures. For example, the traditional diet of the Masai was composed almost entirely of red meat, blood, and milk – all high in Neu5Gc – yet they were free from modern inflammatory diseases. (7) If Neu5Gc really caused significant inflammation, the Masai should’ve been the first to know, because they probably couldn’t have designed a diet higher in Neu5Gc if they tried.
Arachidonic Acid
Arachidonic acid (AA) is often cited as a source of inflammation, and because AA is found primarily in eggs and meat, this concern could contribute to the view that red meat is inflammatory. AA is an essential omega-6 fatty acid that is a vital component of cell membranes and plays an important role in the inflammatory response. (8) It’s especially necessary during periods of bodily growth or repair, and is thus a natural and important component of breast milk. (9) AA is sometimes portrayed as something to be avoided entirely simply because it is ‘inflammatory,’ but as usual, that view drastically oversimplifies what actually happens in the body.It’s true that AA plays a role in inflammation, but that’s a good thing! It ensures that our body responds properly to a physical insult or pathogen, and it also helps ensure that the inflammatory response is turned off when it’s no longer needed. AA interacts with other omega-3 and omega-6 fatty acids in intricate and subtle ways, and an imbalance in any of those fats has undesirable effects. For example, low doses of EPA tend to increase tissue levels of AA, while high doses decrease levels of AA, which probably explains why the benefits of fish oil supplementation are lost at higher doses. (10) In epidemiological studies, higher plasma levels of both AA and the long-chain omega-3 PUFA were associated with the lowest levels of inflammatory markers. (11, 12) And clinical studies have found that adding up to 1,200 mg of AA per day—which is 12 times higher than the average intake of AA in the U.S.— to the diet has no discernible effect on the production of inflammatory cytokines. (13, 14) What’s more, our Paleolithic ancestors (who were largely free of chronic, inflammatory disease) consumed at least twice the amount of AA that the average American does today. (15)
Finally, it’s important to note that red meat actually has a lower concentration of AA than other meats because of its lower overall PUFA content. (16)(17) Additionally, red meat has been shown to increase tissue concentrations of both AA and the long chain omega-3s DHA and EPA, preserving the all-important balance of omega-3 and omega-6. (18)
Charred meat and cancer
The final concern I want to address involves compounds that are produced when meat is cooked, including advanced glycation end products (AGEs), heterocyclic amines (HAs), and polycyclic aromatic hydrocarbons (PAHs). Again, this applies to all meat, not just red meat, but it can still contribute to the perception that red meat is unhealthy.HAs and PAHs have both been shown to cause cancer in animal models, and although these results can’t necessarily be extrapolated to humans, it’s probably wise to limit exposure to these two compounds. (19)(20) HAs and PAHs are formed when meat is cooked using high-heat or dry cooking methods such as frying, grilling, or smoking. But while cooked meat is the only significant source of HAs, PAHs are a ubiquitous environmental contaminant, and the bulk of dietary PAHs actually come from vegetables and grains. (21) In fact, levels of PAH in leafy vegetables are comparable to levels in smoked meat! However, the highest food levels of PAH are found in charred meats that have been cooked over an open flame.
AGEs are different from the other compounds in that they can be formed both endogenously and exogenously. (22) Like HAs and PAHs, AGEs are formed when foods – particularly meat – are cooked, although they are also naturally present even in uncooked meat. However, dietary AGEs do not tell the whole story, because they can also form through various metabolic pathways in the body.
One study showed that while omnivores generally have higher dietary intakes of AGEs than vegetarians, vegetarians actually end up with higher concentrations of AGEs in their plasma. (23) The authors hypothesized that their results were due to the increased fructose intake of vegetarians, although another plausible mechanism appears to be the inhibition of AGE formation by carnosine, an amino acid found in meat. (24)(25) Either way, I wouldn’t be terribly concerned about AGEs in meat, although I still recommend favoring lower-heat cooking methods to avoid HAs and PAHs.
If you do want to grill or fry your meats, you can significantly reduce the formation of all of these compounds by using an acidic marinade, which has the added bonus of tasting great! Marinating beef for one hour reduced AGE formation by over half, and marinades can cut HA formation in meat by up to 90%. (26)
Overall, there’s no good evidence that red meat is more inflammatory than other meats, and some evidence indicating that it’s less inflammatory. Just like any other food, it’s certainly possible for people to have individual intolerances to red meat that might induce inflammation, but there’s no reason for most people to restrict red meat on the basis of inflammation. Additionally, AGEs from meat are probably not a concern, and meat eaters might even be better off when it comes to plasma levels of AGEs. Any concerns about other compounds produced by cooking meat can be minimized simply by favoring wet or low-heat cooking methods, or using a marinade when high-heat methods are desired.
I hope I’ve addressed all the remaining health concerns with eating red meat, but I’d like to hear your thoughts in the comments below.
===============================================================
Read the complete article here.
Also read more here.
Friday, August 17, 2012
High fat diet during pregnancy leads to severe liver disease - Kresser
Seriously. I cannot believe the stuff that gets published in medical journals these days. I don’t know which is the scarier possibility: that the researchers are really so poorly trained that they consistently violate the most basic principles of medical research (that you probably learned in your 8th grade science class), or that they are so dishonest that they intentionally and blatantly lie about their results.
A prime example of this is an article that came across my newsfeed a couple of days ago. The headline read “High fat diet during pregnancy leads to severe liver disease“. I’m always very, very suspicious when I see articles like this because of my previous experience evaluating such studies. All too often researchers make basic (and frankly, inexcusable) mistakes like lumping all fat types together (i.e. combining saturated fat with polyunsaturated fat, although the two fatty acids have completely different effects on human physiology).
I didn’t have time to review the study and write about it, so I emailed Chris Masterjohn, a researcher pursuing a PhD in Nutritional Sciences with a concentration in Biochemical and Molecular Nutrition at the University of Connecticut. Chris has a blog called The Daily Lipid where he writes about the benefits of saturated fat and the dangers of polyunsaturated fat. Turns out Chris had seen the article on ScienceDaily too and was planning to write a critique. Here’s what he wrote. I encourage you to check out his blog, and also his website, both of which have some great information about the health benefits of cholesterol and saturated fat.
According to a recent article on ScienceDaily, scientists have discovered that mothers who eat too much saturated fat during pregnancy will give their future child severe fatty liver disease once he or she becomes an adult.
The use of words in this article like “mother,” “child,” and “adulthood” suggests that the researchers performed some type of scientific research in humans. In fact, ScienceDaily goes so far as to claim that the researchers were studying the consumption of high-fat diets during “a woman’s pregnancy.”
Nowhere in the article do the authors inform the reader that the research was performed in mice. This is the first time I have ever read of a mouse referred to as a “woman.”
The most egregious distortion of the study, however, comes from one of the researchers himself:
Professor Christopher Byrne, with colleagues Dr Felino Cagampang and Dr Kim Bruce, of the University’s School of Medicine and researchers at King’s College London, conducted the study, funded by the BBSRC. Prof Byrne explained: “This research shows that too much saturated fat in a mother’s diet can affect the developing liver of a fetus, making it more susceptible to developing fatty liver disease later in life. An unhealthy saturated fat-enriched diet in the child and young adult compounds the problem further causing a severe form of the fatty liver disease later in adult life.”
Really, “saturated fat” causes liver disease? This stands in surprising contrast to other rodent studies showing that saturated fat prevents liver disease:
If we look at “supplementary table 1,” we find that the “saturated fat” used in this study was mostly monounsaturated and polyunsaturated fat. In fact, 22 percent of the fat on the low-fat diet was saturated, while only 15 percent of the fat on the high-fat diet was saturated!
That means that less than seven percent of the calories from the “unhealthy saturated-fat-enriched diet” actually came from saturated fat.
The “unhealthy saturated fat-enriched diet” actually contained 44 percent of its fat as polyunsaturated fatty acids (PUFA) and almost twenty percent of its total calories as PUFA. This is in great excess of the PUFA consumption seen even in the Standard American Diet (SAD), loaded in processed PUFA-rich vegetable oils.
Apparently “saturated fat” consumed during a “woman’s pregnancy” leads to liver disease once the “child” reaches “adulthood” only when the “saturated fat” is the highly polyunsaturated kind one would find in corn oil and the “woman” is a light, fluffy critter no one would ever mistake for a human.
What can we learn from this study? Perhaps that we can never trust the news account of a research study. Unfortunately we cannot even trust the quotes in those news account taken from the researchers themselves.
======================================================================
Read the full article here.
The use of words in this article like “mother,” “child,” and “adulthood” suggests that the researchers performed some type of scientific research in humans. In fact, ScienceDaily goes so far as to claim that the researchers were studying the consumption of high-fat diets during “a woman’s pregnancy.”
Nowhere in the article do the authors inform the reader that the research was performed in mice. This is the first time I have ever read of a mouse referred to as a “woman.”
The most egregious distortion of the study, however, comes from one of the researchers himself:
Professor Christopher Byrne, with colleagues Dr Felino Cagampang and Dr Kim Bruce, of the University’s School of Medicine and researchers at King’s College London, conducted the study, funded by the BBSRC. Prof Byrne explained: “This research shows that too much saturated fat in a mother’s diet can affect the developing liver of a fetus, making it more susceptible to developing fatty liver disease later in life. An unhealthy saturated fat-enriched diet in the child and young adult compounds the problem further causing a severe form of the fatty liver disease later in adult life.”
Really, “saturated fat” causes liver disease? This stands in surprising contrast to other rodent studies showing that saturated fat prevents liver disease:
- A 1995 paper in the journal Gastroenterology lauded “dietary saturated fatty acids” as “a novel treatment for alcoholic liver disease” after showing that substitution of saturated palm oil for polyunsaturated fish oil reduced alcohol-induced liver damage.
- A more recent paper published in the Journal of Nutrition 2004 showed that saturated fat from MCT oil (medium-chain fats similar to those in coconut oil) and beef tallow reduced alcohol-induced liver damage when substituted for polyunsaturated corn oil. In fact, they replaced 20 percent, 45 percent, or two-thirds of the corn oil with saturated fat and found that the more saturated fat they used, the greater the protective effect.
- An even more recent paper published in the journal Hepatology in 2005 found that rats fed corn oil readily developed liver damage when fed over a quarter of their calories as alcohol, but rats fed saturated cocoa butter were virtually immune to liver damage when consuming the same amount of alcohol.
- A 2007 study published in the journal Nutrition and Metabolism found that although corn oil-based high-fat diets can induce non-alocholic fatty liver disease in rodents, long-term feeding of high-fat diets based on coconut oil or butter cannot.
If we look at “supplementary table 1,” we find that the “saturated fat” used in this study was mostly monounsaturated and polyunsaturated fat. In fact, 22 percent of the fat on the low-fat diet was saturated, while only 15 percent of the fat on the high-fat diet was saturated!
That means that less than seven percent of the calories from the “unhealthy saturated-fat-enriched diet” actually came from saturated fat.
The “unhealthy saturated fat-enriched diet” actually contained 44 percent of its fat as polyunsaturated fatty acids (PUFA) and almost twenty percent of its total calories as PUFA. This is in great excess of the PUFA consumption seen even in the Standard American Diet (SAD), loaded in processed PUFA-rich vegetable oils.
Apparently “saturated fat” consumed during a “woman’s pregnancy” leads to liver disease once the “child” reaches “adulthood” only when the “saturated fat” is the highly polyunsaturated kind one would find in corn oil and the “woman” is a light, fluffy critter no one would ever mistake for a human.
What can we learn from this study? Perhaps that we can never trust the news account of a research study. Unfortunately we cannot even trust the quotes in those news account taken from the researchers themselves.
======================================================================
Read the full article here.
Saturday, July 21, 2012
Three more studies that should make you skeptical of mainstream health advice - Kresser

If you’re a new reader, you might be surprised to learn that there’s very little evidence to support these recommendations and plenty of evidence that contradicts them. Long ago I learned that if I wanted to live a long, healthy life it was in my best interest to ignore the dietary advice of the medical mainstream. And of course that’s why I started this blog – to share this information with all of you so you can make educated, and informed choices about your health.
Lately I’ve been encouraged by the number of studies being published that undermine the anti-fat, anti-cholesterol dogma we’ve been brainwashed with for so long. This is good news.
The bad news is that paradigm shifts do not happen overnight. It took half a century for researchers and doctors to convince people that eating toxic, highly processed, nasty-tasting vegetable oils was somehow better for them than eating traditional animal fats like butter and lard; that eating dry bagels, boneless-skinless chicken breast and salad with fat-free dressing was a path to good health; and that the best way to lose weight was to eat a highly unnatural diet high in processed, refined carbohydrates and low in fat.
So I don’t expect these ideas to disappear anytime soon, in spite of the solid evidence being published that contradicts them. It’s going to take time. But my sense is that it will take less time to convince people that eating traditional, nutrient-dense, whole foods that have been minimally processed is better for them than eating what the industrial food conglomerates have been selling us.
Here are the three studies.
The first is yet another study that associates low cholesterol with an increase in the risk of death (total mortality). It showed increased death rates in hospitalized patients with low cholesterol levels.
CONCLUSIONS: In our cohort, lower LDL-cholesterol at admission was associated with decreased 3-year survival in patients with NSTEMI.
This shouldn’t be a surprise. There’s already plenty of evidence suggesting low cholesterol increases the risk of death – as well as contributing to other conditions such as cancer and depression. For more on this see my previous article Cholesterol Doesn’t Cause Heart Disease.The second study shows (once again) that cutting carbs is the best way to lose weight and fight obesity.
No surprise here either. Countless studies, trials and reviews have demonstrated that low-carb diets are superior for weight loss, managing diabetes and preventing many of the other modern diseases which plague us. How long will it take until doctors and the media get the message? For more on one such recent review, see Low-carb Diet Best for Weight Loss.
The last study I want to share with you was performed by a Swedish PhD student. It demonstrates that children who eat saturated fat and full-cream dairy products are healthier than those who do not.
Conclusions: BMI correlated strongly to fat mass and leptin was the best marker of overweight and fat mass in 8-year-olds. Food choice was similar to that at 4 years of age. An intake of fat fish once a week was associated with higher serum concentrations of n-3 fatty acids. Saturated fat and intake of full fat milk were inversely associated with BMI. Serum phospholipid fatty acids were associated with bone mineralisation. The results for metabolic markers may provide preliminary reference intervals in healthy children.
If you’re surprised by this, read my recent post Have Some Butter with Your Veggies as well as Whole Fat Milk: Benefits for Moms and Kids.
==================================================================
Read the complete article here.
Subscribe to:
Posts (Atom)