FB-TW

Showing posts with label lipoprotein. Show all posts
Showing posts with label lipoprotein. Show all posts

Monday, March 25, 2013

LDL-P should be considered as a primary goal of therapy due to its stronger association with cardiovascular risk.

Cardiovascular Disease

Visit our website Lipoprotein Perspectives
Atherosclerosis is the condition in which the artery wall thickens as the result of the buildup of fatty material such as cholesterol. Management of atherosclerosis is an integral part of clinical practice.

Historically, clinicians manage a patient's risk for cardiovascular disease by measuring plasma lipids such as LDL-C, HDL-C and triglycerides. More recently, it's been shown that measurement of lipoprotein particles, the containers that carry cholesterol, may be beneficial for patient management.
Among cardiometabolic risk (CMR) patients, about two-thirds have high Low Density Lipoprotein particle number (LDL-P) despite optimal levels of LDL-C. For cardiometabolic risk patients, LDL-P should be considered as a primary goal of therapy due to its stronger association with cardiovascular risk.1

Manage your patients with clarity and confidence with LDL-P by NMR.
1. Rosenson et al. Atherosclerosis. 2010; 213:1-7

===========================================================================================
Read the full article here.

Monday, March 11, 2013

Lipoprotein Particles Linkd to Cardiovascular Disease Risk

March 11, 2013

New Data Further Links Lipoprotein Particles to Cardiovascular Disease Risk

Findings Presented at the ACC Annual Scientific Sessions
RALEIGH, N.C.--(BUSINESS WIRE)-- LipoScience, Inc. (NASDAQ: LPDX) an in vitro diagnostic company committed to advancing patient care in cardiovascular, metabolic and other diseases, today announced the presentation of data from two studies, at the Annual Scientific Session of the American College of Cardiology (ACC) in San Francisco, highlighting the importance of low density lipoprotein particle (LDL-P) measurements in identifying cardiovascular disease risk for patients.
Previous studies have indicated that many patients with relatively normal levels of low density lipoprotein cholesterol (LDL-C) have increased LDL-P, illustrating discordance between the two measures of LDL. The medical community is increasingly aware of the critical role utilizing LDL-P as measured by nuclear magnetic resonance (NMR) spectroscopy to help manage a patient's cardiovascular disease risk. The data presented at ACC further validates the need for increased awareness of LDL-P as an indicator of cardiovascular disease, and the value of NMR as a differentiated platform technology.
  
Discordance in Low-Density Lipoprotein Particle Number (LDL-P) and Apolipoprotein B (Apo B) Level

On Saturday, March 9, Dr. Pamela Morris, M.D., FACC of the Medical University of South Carolina, presented data from the study "Discordance in Low-Density Lipoprotein Particle Number (LDL-P) and Apolipoprotein B (Apo B) Level" highlighting the relationship between these two biomarkers in assessing cardiovascular risk. The study examined the Apo B and LDL-P values of 1,196 subjects. Ultimately, it was found that a considerable percentage of patients had much higher LDL-P levels despite attaining normal levels of Apo B.
  
"In some cases, LDL cholesterol and LDL particle numbers do not agree, leaving seemingly healthy patients with hidden risk for cardiovascular events," said Dr. Morris, an author of this study. "The data presented shows that the same is true for Apo B and LDL-P. Discordance is a potential concern amongst these biomarkers, illuminating the need for a complete picture of heart health. Physicians should not rely solely on one diagnostic measure—it is necessary to examine both LDL-C and LDL-P to manage patient care."
  
NMR-Based Lipoprotein Particle Profiling Identifies Novel Signatures for Cardiovascular Disease

Another presentation, "NMR-Based Lipoprotein Particle Profiling Identifies Novel Signatures for Cardiovascular Disease," explored the associations of LDL-P with cross sectional coronary artery disease (CAD) and CAD severity, and the potential as a predictor of incident cardiovascular events. The study analyzed plasma from 1,736 patients who were enrolled in the CATHGEN biorepository of patients undergoing cardiac catheterization at Duke University Medical Center. The study found novel lipoprotein signatures that independently discriminate the presence and extent of CAD and predict incident mortality and myocardial infarction.
  
"This study contributes to the growing body of research linking lipoprotein particle number to increased risk for cardiovascular disease," said William E. Kraus, M.D., Professor of Cardiology at Duke University, and an author of the study. "By analyzing LDL-P by NMR spectroscopy, we were able to determine that lipoprotein size and concentration are novel biomarkers for CAD discrimination and mortality prediction."
  
LDL-P was measured in both studies using LipoScience's NMR LipoProfile®test, a laboratory test that utilizes NMR spectroscopy to measure LDL particle number and standard lipid values. LDL-P information can help clinicians personalize and refine LDL management decisions, particularly to minimize residual risk in patients with low LDL cholesterol levels.
  
LipoScience ACC Poster Presentations Details:
  • Discordance in Low-Density Lipoprotein Particle Number (LDL-P) and Apolipoprotein B (Apo B) Level
    Date: Saturday, March 9, 2013
    Time: 3:45 p.m.-4:30 p.m.
    Location: Poster Sessions, Expo North
  • NMR-Based Lipoprotein Particle Profiling Identifies Novel Signatures for Cardiovascular Disease
    Date: Monday, March 11, 2013
    Time: 9:45 a.m.-10:30 a.m.
    Location: Poster Sessions, Expo North
For more information on LipoScience, please visit www.liposcience.com or the LipoScience, Inc. booth at #S943.
  
About LipoScience, Inc.

LipoScience, Inc. is pioneering a new field of personalized diagnostics based on nuclear magnetic resonance (NMR) technology. Its first proprietary diagnostic test, the NMR LipoProfile®test, measures the number of low density lipoprotein particles (LDL-P) in a blood sample and provides physicians and their patients with actionable information to personalize management of risk for heart disease. To date, over 9 million NMR LipoProfile tests have been ordered. LipoScience's automated clinical analyzer Vantera®, has been cleared by the FDA. It requires no previous knowledge of NMR technology to operate and has been designed to dramatically simplify complex technology through ease of use and walk away automation. The Vantera system will be placed with national and regional clinical laboratories.
LipoScience is driving toward becoming a clinical standard of care by decentralizing its technology and expanding its menu of personalized diagnostic tests to address a broad range of cardiovascular, metabolic and other diseases. For further information on LipoScience, please visit www.liposcience.com and www.theparticletest.com.
========================================================
Read the complete article here.

Wednesday, August 29, 2012

There Is No Such Thing As Bad Cholesterol

Putting The Myth To Rest: There Is No Such Thing As Bad Cholesterol
Perhaps one of the biggest health myths propagated in western culture and certainly in the United States, is the correlation between elevated cholesterol and cardiovascular disease (CVD). Unfortunately, despite dozens of studies, cholesterol has not been shown to actually cause CVD. To the contrary, cholesterol is vital to our survival, and trying to artificially lower it can have detrimental effects, particularly as we age.

Cholesterol seems to be one of those things that strikes fear into the hearts of many, so to speak. We have become obsessed with eating foods low in cholesterol and fat. Ask almost anyone, and they can tell you their cholesterol levels.

What is certain is that the 'little knowledge' that the media often imparts means many folks assume cholesterol is simply a 'bad' thing. Alternately, a good number of us may have heard the terms 'good' cholesterol and 'bad' cholesterol bandied about without knowing much about what this really means. In fact it is a fairly safe bet that if you asked anyone on the street for his or her instinctive response, if asked about cholesterol, they would probably say that we simply need to 'reduce it'.

The 'noddy-science' offered by marketing men to a generally scientifically-naive public has led many people to believe that we should replace certain food choices with specially developed products that can help 'reduce cholesterol'. Naturally this comes at a price and requires those who can afford it to pay maybe four or five times what a 'typical ordinary' product might cost. But is this apparent 'blanket need' to strive towards lowering our cholesterol justified? And, indeed, is it healthy?

For anyone who has had the official diagnosis of 'high cholesterol' in their bloodstream, they may even have embarked upon a program of medicinal intervention. In fact it is quite likely that they may have joined the legions of long-term pill-poppers who are already lining the pockets of the profit-oriented pharmaceutical giants.

But let's take a moment, now, to review some of the facts and fallacies about the much-maligned substance: cholesterol.

Cholesterol is needed to make hormones. Without it we would not produce estrogen, progesterone or testosterone. It is vital for the functioning of nerve synapses and provides the structural integrity for our cell membranes. Cholesterol is used by the skin to help prevent water evaporation and to make our skin waterproof. Vitamin D is synthesized from cholesterol. And bile, used for fat digestion, consists mostly of cholesterol. The liver produces about 90 percent of the cholesterol in our bodies; only 10 percent comes from diet. If we eat too much cholesterol, the liver decreases the output of cholesterol.


Cholesterol is a naturally occurring lipid. This means it is a type of fat or oil and it is in fact an essential component in creating and sustaining the membranes of the cells of all bodily tissues. So this alone means we need cholesterol to survive! Most of the cholesterol that is found in our bodies is actually naturally manufactured within our own cells. However there is also an additional contribution that we get from external 'nutritional' sources - the foods we consume. In a typical diet providing around 400mg of cholesterol per day from food sources, about half to two-thirds of this amount is actually absorbed through the process of digestion. The body will normally secrete about a gram (1000mg) of cholesterol per day into the bile via the ducts, and approximately three-fifths of this is then re-absorbed.

Where our tissues or organs are a particularly dense complex of cells, which have closely packed cell membranes, there will naturally be higher levels of cholesterol. The key organs that need, and contain, these higher amounts of cholesterol include the liver, the brain and the spinal cord - none of which would work well if we reduced cholesterol too much!

In effect cholesterol plays an essential role in the development and maintenance of healthy cell walls. It is also a critical factor in the synthesizing of steroid hormones, which are a key factor in our natural physical development.

Being a lipid, cholesterol is fat-soluble, but it is not soluble in blood. However it needs to be transported around the body to the places where it can be utilized. This is why, in order to be moved around, it must become 'associated' with certain lipoproteins which feature a water-soluble (therefore 'blood transportable') coat of proteins. There are two key types of lipoproteins that transport cholesterol around the body: low-density and high-density variants. The essential cellular function of cholesterol requires that sufficient amounts are manufactured by specialized sub-systems (or organelles) within the body's cells called the endoplasmic reticulum. Alternatively, the cholesterol we need must be derived from our diet. During the process of 'digestion and assimilation' of foods, it is the low-density lipoprotein (LDL) that carries dietary cholesterol from the liver to various parts of the body.

When there is sufficient cholesterol for cellular needs, the other key transport mechanism in this amazing 'logistics system' - high-density lipoprotein (HDL) - can take cholesterol back to the liver from where any unnecessary excess can be processed for excretion.

The 'noddy-science' of the so-called 'functional food' manufacturers would have us believe that there is such a thing as 'bad' cholesterol and 'good' cholesterol. This is, in fact, totally untrue. The cholesterol itself, whether being transported by LDL or HDL, is exactly the same. Cholesterol is simply a necessary ingredient that is required to be regularly delivered around the body for the efficient healthy development, maintenance and functioning of our cells. The difference is in the 'transporters' (the lipoproteins HDL and LDL) and both types are essential for the human body's delivery logistics to work effectively.

Problems can occur, however, when the LDL particles are both small and their carrying capacity outweighs the transportation potential of available HDL. This can lead to more cholesterol being 'delivered' around the body with lower resources for returning excess capacity to the liver.

LDL can vary in its structure and occur in particles of varying size. It is the smaller LDL particle sizes that can easily become 'trapped' in the arteries by proteoglycans, which is, itself, a kind of 'filler' found between the cells in all animal and human bodies. This can then cause the cholesterol the LDL carries to contribute to the formation of fatty deposits called 'plaques' (a process known as atherogenesis). As these deposits build up, they restrict the arteries' width and flexibility. This causes an increase in blood pressure and can also lead to other cardiovascular problems such as heart attacks or strokes.

The LDL itself is consequently sometimes referred to as 'bad cholesterol', but you can now appreciate the fact that this is simply incorrect. In fact LDL, HDL and cholesterol are all essential to our health. However, it seems that it has become common for humans to have a preponderance of 'unhealthily' small LDL particles, which can become a precursor to heart and arterial disease due to the mechanisms described. It is apparently healthier to have a smaller number of larger LDL particles carrying the same quantity of cholesterol than a large number of small LDL particles might transport, but for some reason this is less common. This is an interesting area that demands more research.

When LDL becomes retained by the glycol-proteins in the arteries it is subject to being oxidized by 'free radicals'. This is when the process can become health threatening. It has therefore been suggested that increasing the amount of antioxidants in our diet might effectively 'mop up' free radicals, and consequently reduce this harmful oxidation. Although the idea of consuming foods rich in antioxidants, or even using supplements, is now widely promoted, the scientific evidence for their efficacy still remains to be fully established.

Another point to consider is the occurrence of substances called 'very-low-density-lipids' or VLDL, also known as triglycerides. VLDL is converted to LDL in the bloodstream and therefore contributes towards increased levels of LDL and to subsequent potential cholesterol-related health problems. This is why triglycerides are usually measured when a cholesterol test of your blood is undertaken.

The production of VLDL in the liver - which amounts to a combination of cholesterol and low-density apolipoprotein - is exacerbated by the intake of fructose. Fructose is the type of sugar found in many fruits, it is also a component of sucrose and of the widely used food ingredient high-fructose corn syrup. This implies that anyone whose LDL or triglyceride levels are unduly high should cut back on those sweet sugary snacks, and even on the sweeter, fructose laden fruits; not simply reduce their intake of fatty foods!

Vitamin B3, otherwise known as niacin, on the other hand, actually lowers the amount of VLDL, and therefore also LDL. In addition, niacin helps to stimulate the production of helpful HDL, the lipoprotein that carries excess cholesterol back to the liver for excretion. However, in keeping with the best traditions of consuming 'all things in moderation', currently recommended upper limits for daily intake of niacin is 35mg, given that it can have toxic effects in larger amounts. Even so, medical professionals have been known to prescribe niacin in doses as high as 2g, up to three times a day, for treatment of those with dangerously high blood cholesterol levels. Naturally you should never self-medicate with high doses of niacin without taking appropriate medical advice.

Niacin in the diet is typically derived from high protein foods including liver and other meats, as well as significant amounts being found in certain nuts and whole grains.

However one of the fashionable types of pharmaceutical drugs of recent times, introduced to treat the apparently increasing incidence of high cholesterol levels particularly in the West, are Statins. Most likely you have a friend or relative taking these useless drugs (Lipitor, Mevecor, Crestor, etc.) to lower cholesterol. Statin medications are the number-one-selling drugs in the world.
They work by interfering with the liver function and reducing the production of LDL. But Statins are a questionable innovation on at least a couple of accounts. Firstly they are not without side-effects: they can, for example, lead to the breakdown of major muscular material, which can ultimately overwhelm the kidneys and even cause acute renal failure.

Statins also appear to reduce the body's natural levels of the vitamin-like, cellular protection agent known as Co-enzyme Q10. This benzoquinone plays an important role in cellular energy release, particularly in hard worked areas like the lungs, liver and heart. CoQ10 (as it is sometimes called) has also been shown to protect the brain against neurological degeneration. But perhaps most interestingly, with respect to cholesterol, CoQ10 also acts as an antioxidant, particularly active in protecting the system against LDL oxidation and the potential problems associated with this as described above. So whilst Statins might provide a reduction in LDL per se, they might also be causing more problems in the long-term. Naturally, as with many modern drugs, they generally have to be taken for the long-term by anyone who has been prescribed them.

What is particularly disturbing about Statins is, perhaps, the fact that they may be seen as a 'quick fix' for unhealthily high LDL, and consequently cholesterol levels throughout the body. They need to be taken over a long period - which makes them very profitable for drugs manufacturers. But they may also be prescribed without the over-arching message that in order to address any cholesterol problem 'naturally', the sufferer must change their lifestyle and diet. Statins can seem an easy option but may indeed merely be the beginning of a process where the 'negative health pay-off' is simply delayed rather than actively defused! That is not to say that in extreme cases of high blood cholesterol, or hypercholesterolemia, there may not be a useful role for Statin therapy when natural strategies fail or do not prove effective, or feasible.

In truth, and in summary, cholesterol is an important and essential substance that we need for health at a cellular level. It is most likely that any imbalance in our cholesterol transport system comes down to long-term poor dietary and exercise habits. Ensuring that we consume some extra anti-oxidant foods, along with including niacin rich foods, might well be of benefit. But it is perhaps most important to recognize that deliberate and continued levels of activity and the consumption of a healthful diet is a better solution than questionable quick-fix drugs, if we ever are diagnosed with levels of cholesterol and triglycerides that might give cause for concern.


Reference Sources 114, 136, 151, 158
============================================================================================
Read the full article here.

The Straight Dope on Cholesterol: 10 Things You Need to Know - Attia

The Straight Dope on Cholesterol: 10 Things You Need to Know


cholesterol4
This is a guest post by Peter Attia and is a summary based on a 10-part series of the same name that you can find at The Eating Academy
 
To put this summary post and, more importantly, this 10-part series in perspective, let’s examine one of the most pervasive pieces of dietary advice given to people worldwide:

“Eating foods that contain any cholesterol above 0 mg is unhealthy.”
- T. Colin Campbell, PhD, author of The China Study.

No summary of this length can begin to fully address a topic as comprehensive as cholesterol metabolism and the pathogenesis of atherosclerosis. In fact, those of us who challenge conventional wisdom often find ourselves needing to do exactly what Frederic Bastiat suggested:

“We must admit that our opponents in this argument have a marked advantage over us. They need only a few words to set forth a half-truth; whereas, in order to show that it is a half-truth, we have to resort to long and arid dissertations.”

So, at the risk of trying to minimize the “long and arid” part of this process, below are the 10 things you need to know to be the judge – for yourself – if the conventional advice about cholesterol is correct.

1. The sine qua non of atherosclerosis is the presence of a sterol in an artery wall. How it gets there is the only thing we should be worrying about.

Contrary to popular belief, atherosclerosis is not caused by many of things we think of, such as smoking, high blood pressure, diabetes, high LDL (the so-called “bad” cholesterol), or low HDL (the so-called “good” cholesterol). Some of these are certainly markers of risk – low HDL, for example – while others accelerate the process – smoking, for example – but none of these are the direct cause of atherosclerosis.

The sine qua non of atherosclerosis is the presence of sterols (cholesterol or phytosterol) in arterial wall macrophages. Sterols are delivered to the arterial wall by the penetration of the endothelium by an apoB-containing lipoprotein, which transport the sterols. In other words, unless an apoB-containing lipoprotein particle violates the border created by an endothelium cell and the layer it protects, the media layer, there is no way atherogenesis occurs. If this is a bit confusing, don’t worry. It’s all made clear below.

2. Cholesterol is vital for life; no cholesterol = no life.

Cholesterol is a 27-carbon molecule shown in the figure below. Each line in this figure represents a bond between two carbon atoms. That’s it. Mystery over.

All this talk about “cholesterol” and most people don’t actually know what it is. So, there you have it. Cholesterol is “just” another organic molecule in our body.

I need to make one distinction that will be very important later. Cholesterol, a steroid alcohol, can be “free” or “unesterified” (“UC” as we say, which stands for unesterified cholesterol) which is its active form, or it can exist in its “esterified” or storage form which we call a cholesterol ester (“CE”). The diagram below shows a free (i.e., UC) molecule of cholesterol. An esterified variant (i.e., CE) would have an “attachment” where the arrow is pointing to the hydroxyl group on carbon #3, aptly named the “esterification site.”
Cholesterol 1
One of the biggest misconceptions is that cholesterol is “bad.” This could not be further from the truth. Cholesterol is very good! In fact, there are (fortunately rare) genetic disorders in which people cannot properly synthesize cholesterol. One such disease is Smith-Lemli-Opitz syndrome (also called “SLOS,” or 7-dehydrocholesterol reductase deficiency) which is a metabolic and congenital disorder leading to a number of problems including autism, mental retardation, lack of muscle, and many others.

Cholesterol is absolutely vital for our existence. Every cell in our body is surrounded by a membrane. These membranes are largely responsible for fluidity and permeability, which essentially control how a cell moves, how it interacts with other cells, and how it transports “important” things in and out. Cholesterol is one of the main building blocks used to make cell membranes (in particular, the ever-important “lipid bilayer” of the cell membrane).

Beyond cholesterol’s role in allowing cells to even exist, it also serves an important role in the synthesis of vitamins and steroid hormones, including sex hormones and bile acids. Make sure you take a look at the picture of steroid hormones synthesis and compare it to that of cholesterol (above). If this comparison doesn’t convince you of the vital importance of cholesterol, nothing I say will.
One of the unfortunate results of the eternal need to simplify everything is that we (i.e., the medical establishment) have done the public a disservice by failing to communicate that there is no such thing as “bad” cholesterol or “good” cholesterol. All cholesterol is imperative for life to exist!

The only “bad” outcome is when cholesterol ends up inside of the wall of an artery, most famously the inside of a coronary artery or a carotid artery, AND leads to an inflammatory cascade which results in the obstruction of that artery (make sure you check out the pictures in the links above). When one measures cholesterol in the blood we really do not know the final destination of those cholesterol molecules!

3. The cholesterol we eat has little to do with the cholesterol we measure in our bloodstream.

We ingest (i.e., take in) cholesterol in many of the foods we eat and our body produces (“synthesizes”) cholesterol de novo from various precursors. About 25% of our daily “intake” of cholesterol – roughly 300 to 500 mg – comes from what we eat (called exogenous cholesterol), and the remaining 75% of our “intake” of cholesterol – roughly 800 to 1,200 mg – is made by our body (called endogenous production). To put these amounts in context, consider that total body stores of cholesterol are about 30 to 40 gm (i.e., 30,000 to 40,000 mg) and most of this resides within our cell membranes. Nearly every cell in the body can produce cholesterol, and thus very few cells actually require a delivery of cholesterol. Cholesterol is required by all cell membranes and to produce steroid hormones and bile acids.

Of this “made” or “synthesized” cholesterol, our liver synthesizes about 20% of it and the remaining 80% is synthesized by other cells in our bodies. The synthesis of cholesterol is a complex four-step process (with 37 individual steps) that I will not cover here, but I want to point out how tightly regulated this process is, with multiple feedback loops. In other words, the body works very hard (and very “smart”) to ensure cellular cholesterol levels are within a pretty narrow band (the overall process is called cholesterol homeostasis). Excess cellular cholesterol will crystalize and cause cellular apoptosis (programmed cell death). Plasma cholesterol levels (which is what clinicians measure with standard cholesterol tests) often have little to do with cellular cholesterol, especially artery cholesterol, which is what we really care about. For example, when cholesterol intake is decreased, the body will synthesize more cholesterol and/or absorb (i.e., recycle) more cholesterol from our gut. The way our body absorbs and regulates cholesterol is really amazing, so I want to spend a bit of time discussing it.

Enterocyte
  • The blue circle in this figure represents something called a Niemann-Pick C1-like 1 protein (NPC1L1). It sits at the apical surface of enterocytes and it promotes active influx (i.e., bringing in) of gut luminal unesterified cholesterol (UC) as well as unesterified phytosterols into the enterocyte. Think of this NPC1L1 as the ticket-taker at the door of the bar (where the enterocyte is the “bar”); he lets most cholesterol (“people”) in. However, NPC1L1 cannot distinguish between cholesterol (“good people”) and phytosterol (“bad people” – for reasons I won’t discuss here) or even too much cholesterol (“too many people”).

  • The pink circle in this figure represents a structure called the adenosine triphosphate (ATP)-binding cassette (ABC) transporters ABCG5 and ABCG8. This structure promotes active efflux (i.e., kicking out) of unesterified sterols (cholesterol and plant sterols – of which over 40 exist) from enterocytes back into the intestinal lumen for excretion. Think of ABCG5/G8 as the bouncer at the bar; he gets rid of the really bad people (e.g., phytosterols, as they serve no purpose in humans) you don’t want in the bar who snuck past the ticket-taker (NPC1L1). Of course, in cases of hyperabsorption (i.e., where the gut absorbs too much of a good thing) they can also efflux out un-needed cholesterol. Along this analogy, once too many “good people” get in the bar, fire laws are violated and some have to go. The enterocyte has “sterol-excess sensors” (a nuclear transcription factor called LXR) that do the monitoring, and these sensors activate the genes that regulate NPC1L1 and ABCG5/G8.
There is another nuance to this, which is where the CE versus UC distinction comes in:
  • Only free or unesterified cholesterol (UC) can be absorbed through gut enterocytes. In other words, cholesterol esters (CE) cannot be absorbed because of the bulky side chains they carry.
  • Much (> 50%) of the cholesterol we ingest from food is esterified (CE), hence we don’t actually absorb much, if any, exogenous cholesterol (i.e., cholesterol in food).
  • Furthermore, most of the unesterified cholesterol (UC) in our gut (on the order of about 85%) is actually of endogenous origin (meaning it was synthesized in bodily cells and returned to the liver), which ends up in the gut via biliary secretion and ultimately gets re-absorbed by the gut enterocyte. The liver is only able to efflux (send out via bile into the gut) UC, but not CE, from hepatocytes (liver cells) to the biliary system. Liver CE cannot be excreted into bile. So, if the liver is going to excrete CE into bile and ultimately the gut, it needs to de-esterify it using enzymes called cholesterol esterolases which can convert liver CE to UC.

4. The cholesterol in our bloodstream has little to do with the cholesterol in our artery walls (i.e., atherosclerosis).

To understand how cholesterol travels around our body requires some understanding of the distinction between hydrophobic and hydrophilic. A molecule is said to be hydrophobic (also called nonpolar) if it repels water, while a molecule is said to be hydrophilic (also called polar) if it attracts water. Think of your veins, arteries, and capillaries as the “waterways” or rivers of your body. Cholesterol is precious “cargo” that needs to move around, but it needs a “boat” to carry it.
The proteins that traffic collections of lipids are called apoproteins. Once bound to lipids they are called apolipoproteins, and the protein wrapped “vehicle” that transports the lipids are called lipoproteins. Many of you have probably heard this term before, but I’d like to ensure everyone really understands their important features. A crucial concept is that, for the most part, lipids go nowhere in the human body unless they are a passenger inside a protein wrapped vehicle called a lipoprotein. As their name suggests, lipoproteins are part lipid and part protein. They are mostly spherical structures which are held together by a phospholipid membrane (which, of course, contains free cholesterol). The figure below shows a schematic of a lipoprotein.
lipoprotein2
You will also notice variable-sized proteins on the surface of the lipid membrane that holds the structure together. The most important of these proteins are called apolipoproteins, as I alluded to above. The apolipoproteins on the surface of lipoprotein molecules serve several purposes including:
  1. Assisting in the structural integrity and solubility of the lipoprotein;
  2. Serving as co-factors in enzymatic reactions;
  3. Acting as ligands (i.e., structures that help with binding) for situations when the lipoprotein needs to interact with a receptor on a cell.
Apolipoproteins come in different shapes and sizes which determine their “class.” Without getting into the details of protein structure and folding, let me focus on two important classes: apolipoprotein A-I and apolipoprotein B. ApoA-I is the apolipoprotein that wraps HDL particles. ApoB is the apolipoprotein that wraps VLDL, IDL, and LDL particles.

5. The only way sterols end up in artery walls – the one place we don’t want them to be – is if the sterols are carried there by an apoB-containing lipoprotein particle.

So what drives a LDL particle to do something as sinister as to leave the waterway (i.e., the bloodstream) and “illegally” try to park at a dock (i.e., behind an endothelial cell)? Well, it is a gradient driven process which is why particle number is the key driving parameter.

As it turns out, this is probably a slightly less important question than the next one: what causes the LDL particle to stay there? In the parlance of our metaphor, not only do we want to know why the boat leaves the waterway to illegally park in the dock with its precious cargo, but why does it stay parked there? This phenomenon is called “retention” in lipidology-speak.

Finally, if there was some way a LDL particle could violate the endothelium, AND be retained in the space behind the cell (away from the lumen on the side aptly called the sub-endothelial space) BUT not elicit an inflammatory (i.e., immune) response, would it matter?

I don’t know. But it seems that not long after a LDL particle gets into the sub-endothelial space and takes up “illegal” residence (i.e., binds to arterial wall proteoglycans), it is subject to oxidative forces, and as one would expect an inflammatory response is initiated. The result is full blown mayhem. Immunologic gang warfare breaks out and cells called monocytes and macrophages and mast cells show up to investigate. When they arrive and find the LDL particle, they do all they can to remove it. In some cases, when there are few LDL particles, the normal immune response is successful. But, it’s a numbers game. When LDL particle invasion becomes incessant, even if the immune cells can remove some of them, it becomes a losing proposition and the actual immune response to the initial problem becomes chronic and maladaptive and expands into the space between the endothelium and the media.

The multiple-sterol-laden macrophages or foam cells coalesce, recruit smooth muscle cells, induce microvascularization, and before you know it complex, inflamed plaque occurs. Microhemorrhages and microthrombus formations occur within the plaque. Ultimately the growing plaque invades the arterial lumen or ruptures into the lumen inducing luminal thrombosis. Direct luminal encroachment by plaque expansion or thrombus formation causes the lumen of the artery to narrow, which may or may not cause ischemia.


Read more: http://www.marksdailyapple.com/the-straight-dope-on-cholesterol-10-things-you-need-to-know-part-1/#ixzz24wyQCVFe
=====================================================================
Read the complete article here.

Friday, August 24, 2012

Triglycerides: Mother of Meddlesome Particles - Davis

Triglycerides: Mother of Meddlesome Particles



Triglycerides are a crucial risk factor for coronary plaque growth, even at levels previously thought to be normal. Dr. Davis discusses why and how this oft-neglected factor can be harnessed to strengthen your program.

While the world obsesses over cholesterol, a potent stimulator of plaque growth is frequently ignored—triglycerides. A subject of controversy in past, the data are now clear: triglycerides spawn unwanted lipoprotein particles that trigger plaque growth. Track Your Plaque members are advised that control of triglycerides is essential to everyone’s plaque control program.

Triglyceride control is crucial if you are interested in gaining control over coronary plaque. Triglycerides should be brought under control at the start of your program. If you are experiencing plaque growth (increasing heart scan scores), seriously reining in triglycerides should be considered.
How important are triglycerides?
 
For years, the relationship between coronary heart disease and triglycerides remained muddled by the confounding effects of low HDL. In other words, increased triglycerides tend to occur alongside low HDL. This caused many to dismiss the importance of triglycerides. To make matters even murkier, high triglycerides in some situations generated high risk for heart disease, while in others it appeared unrelated to heart disease, even when markedly elevated (in the thousands!).

Thanks to the evolving science of lipoproteins, the issues are crystallizing. One important fact has emerged: triglycerides are a critical risk factor for coronary plaque growth, even at levels previously thought to be normal. Yes, high triglycerides frequently occur with low HDL, but they also behave independently. High triglycerides are a common cause of heart disease, even in people with low or normal cholesterol values. It is crucial that you (and your doctor) pay close attention to triglycerides if you are to succeed in controlling your plaque. We urge Members to make triglyceride control a priority in their program.
 
Where do triglycerides come from?
 
The liver produces a particle called “very low-density lipoprotein”, or VLDL, packed full of triglycerides. The higher your triglycerides, the more VLDL you will have. Sometimes triglycerides are increased due to genetic factors. More commonly, triglycerides are high due to excess weight, indulging in processed carbohydrates, and resistance to insulin (metabolic syndrome).

VLDL is like that bad kid on the block you want your kids to avoid. VLDL particles in the blood come into contact with LDL and HDL particles and they’re never quite the same. When a LDL or HDL particle meet VLDL, the triglycerides of VLDL are passed on. The result: LDL and HDL become bloated with triglycerides. Triglyceride-loaded LDL and HDL are a ready target for a set of enzymes in the blood and liver that reconfigure these particles into smaller versions, small LDL and small HDL. Recall that both small LDL and HDL are highly undesirable particles that stimulate plaque growth.

Although “official” (ATP-III) guidelines suggest that triglycerides over 150 mg are undesirable, we regard any value over 60 mg as high. An ideal level for an intensive Track Your Plaque approach is <45 font="font" mg.="mg.">
 
How will I know if I have this pattern?
 
On a conventional cholesterol panel, increased triglycerides and low HDL are tip-offs that excess VLDL are available to contribute to coronary plaque growth. At what triglyceride level does this cascade begin to take effect and create this collection of particles? Levels of 45 mg/dl or greater. In the Track Your Plaque program, we aim for zero plaque growth or reduction, and so we target triglyceride levels of 60 mg/dl or less.

You’ll notice that low HDL and increased triglycerides are also patterns that characterize the metabolic syndrome. In our experience, over 50% of adults show at least some of the characteristics of the metabolic syndrome. In our society of inactive, sedentary lifestyles and packaged, processed foods, metabolic syndrome is rampant. That means increased triglycerides from VLDL are also running rampant. The result: a 3 to 7-fold increase in risk for heart attack. Eliminating the metabolic syndrome is another battle we need to fight to conquer plaque. (See Shutting Off the Metabolic Syndrome.)
 
How can triglycerides be reduced?
 
Our triglyceride target of 60 mg or less dramatically reduces triglyceride availability. Without triglycerides, LDL and HDL can’t be processed into undesirable small particles. Among the strategies we use to reach our triglyceride target of 60 mg or less:

  • Fish oil—The omega-3 fatty acids in fish oil are our number one choice for substantially reducing triglycerides. Fish oil, 4000 mg per day, is a good starting dose (providing 1200 mg EPA+DHA); higher doses should be discussed with your physician, though we commonly use 6000–10,000 mg per day without ill-effect. Flaxseed oil, while beneficial for health, does not correct lipoprotein patterns. Consider a concentrated fish oil preparation (e.g., Omacor™, a prescription preparation, or “pharmaceutical grade” preparations from the health food store) if you and your doctor decide a high dose is necessary.
  • Weight loss to ideal weight or ideal BMI (25). If achieved with a reduction in processed carbohydrates, the effect will be especially significant. Exercise will compound the benefits of weight loss, triggering an even larger drop in triglycerides.
  • Reduction in processed carbohydrates—especially snacks; wheat-flour containing foods like breads, pasta, pretzels, chips, bagels, and breakfast cereals; white and brown rice; white potatoes. The reduction of high- and moderate-glycemic index foods is the factor that reduces triglycerides. High triglycerides are therefore a pattern that develops when someone follows a low-fat diet. For this reason, we do not advocate low-fat diets like the Ornish program. Reducing your exposure to wheat-containing snacks and processed foods is an especially useful and easy-to-remember strategy that dramatically reduces triglycerides.
  • Elimination of high-fructose corn syrup—This ubiquitous sweetener is found in everything from beer to bread. High-fructose corn syrup causes triglycerides to skyrocket 30% or more.
  • Niacin in doses of 500–1500 mg is an effective method of reducing triglycerides. Niacin also raises HDL, increases large HDL, reduces the number of small LDL particles, reduces VLDL, and modestly reduces total LDL. The preferred forms are over-the-counter Slo-Niacin® and prescription Niaspan®, the safest and best tolerated. Immediate-release niacin (just called niacin or nicotinic acid on the label) can also be taken safely, provided it is taken no more frequently than twice per day. Total daily doses of >500 mg should only be taken under medical supervision. Avoid nicotinamide and “no-flush niacin” (inositol hexaniacinate), neither of which have any effect whatsoever.
  • Green tea—The catechins (flavonoids) in green tea can reduce triglycerides by 20%. Approximately 600–700 mg of green tea catechins are required for this effect, the equivalent of 6–12 servings of brewed tea. (Tea varies widely in catechin content.) Nutritional supplements are also available that provide green tea catechins at this dose. The weight loss accelerating effect of green tea may add to its triglyceride-reducing power.
  • The thiazolidinediones (Actos®, or pioglitazone, and Avandia®, or rosiglitazone), usually prescribed for pre-diabetes or diabetes, can reduce triglycerides by 30%; Actos may be more effective than Avandia in this regard. However, these agents are accompanied by weight gain.
  • The fibrate class of prescription drugs (fenofibrate, or Tricor®, and gemfibrozil®, or Lopid) reduce triglycerides 30–40%, i.e., almost as effectively as fish oil.


The evil influences of VLDL and triglycerides are therefore erased from your risk profile by achieving the Track Your Plaque target of triglycerides 60 mg/dl or less. One or more of these strategies are usually required to bring your triglycerides to target. 

        William Davis, MD


Selected references:

Packard CJ. Understanding coronary heart disease as a consequence of defective regulation of apolipoprotein B metabolism. Curr Opin Lipidol 1999; 10:237–244.

Otvos J. Measurement of triglyceride-rich lipoproteins by nuclear magnetic resonance spectroscopy Clin Cardiol 1999;22 (Suppl II) II-21–II-27.

Grundy SM. Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 1998;81(4A):18B–25B.

Zilversmit DB. Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin Chem 1995;41(1):153–158.

Thursday, July 12, 2012

Measuring HDL Particles as Opposed to HDL Cholesterol Is a a Better Indicator of Coronary Heart Disease

Measuring HDL Particles as Opposed to HDL Cholesterol Is a a Better Indicator of Coronary Heart Disease, Study Suggests

ScienceDaily (July 11, 2012) — Until recently, it seemed well-established that high-density lipoprotein (HDL) is the "good cholesterol." However there are many unanswered questions on whether raising someone's HDL can prevent coronary heart disease, and on whether or not HDL still matters. A team of researchers at Brigham and Women's Hospital (BWH), the University of Pittsburgh Graduate School of Public Health (GSPH) and other institutions, have discovered that measuring HDL particles (HDL-P) as opposed to HDL cholesterol (HDL-C) is a much better indicator of coronary heart disease (CHD), and that HDL does indeed, still matter.

This study will be electronically published July 11, 2012 and will be published in the August 7th print issue of the Journal of American College of Cardiology.

"Several recent failures of HDL-raising drugs and a genetic study have generated doubt that circulating levels of HDL in the blood are causally related to heart disease, and that raising HDL is a promising therapeutic approach," said Rachel Mackey, PhD, principal investigator of the study and assistant professor of epidemiology at GSPH.

Most previous studies of HDL have looked at the cholesterol to assess CHD risk, not many have examined the particle count. The research team analyzed data from the Multi-Ethnic Study of Atherosclerosis (MESA), an NIH funded multiethnic study. The researchers focused on a subset of data of 5,500 middle-aged men and women, over the age of 45. They looked at the quantity of HDL particles (HDL-P) in addition to the quantity of cholesterol carried by the particles (HDL-C), which has historically been used to measure HDL.

"HDL cholesterol is only one property of HDL particles -- it's like cargo on a ship, one can look at HDL cholesterol, which is one type of the cargo that is carried on the ship, or one can look at the number of ships. In our study, we found that the number of HDL particles had stronger cardio-protection than HDL cholesterol," explained Samia Mora, MD, a physician in the Cardiovascular and Preventive Divisions at BWH and senior author on the study.

The study suggests that it's important to not only measure HDL cholesterol, but to experiment with other ways of measurement, such as HDL particles. "Before we lose confidence in the potential of raising HDL to benefit patients, there needs to be more research extending beyond HDL cholesterol measurement," Explained Dr. Mackey.
===========================================================
Read complete article here.

Wednesday, May 9, 2012

How do we measure cholesterol?

How do we measure cholesterol?

Posted by on May 10, 2012


Concept #5 How do we measure cholesterol?

All this talk about cholesterol probably has some of you wondering how one actually measures the stuff. Much of the raw content I’m going to present here is actually material I’ve had to learn recently. One of the best resources I’ve found on this topic is the text book Contemporary Cardiology: Therapeutic Lipidology, in particular, chapter 14 by Tom Dayspring and chapter 15 by Bill Cromwell and Jim Otvos. Anyone aspiring to be a lipid savant like these three pioneers probably ought to get a copy. The other book that tells this story well is The Cholesterol Wars: The Skeptics versus the Preponderance of Evidence. For most folks, however, I’m hoping this series is sufficient and I’ll do my best to get the important points across.

As far back as the 1940’s scientists understood that cholesterol and lipids could not simply travel freely within the bloodstream without something to carry them and obscure their hydrophobicity, but it certainly wasn’t clear what these carriers looked like.

The initial breakthrough came during the Second World War when two researchers, E.J. Cohn and J.L. Oncley at Harvard developed a complex and elaborate technique to fractionate (i.e., separate) human serum (serum is blood, less the cells and clotting factors) into two “classes” of lipoproteins: those with alpha mobility and those with beta mobility. [“Alpha” versus “beta” mobility describes a pattern of movement seen by different particles, relative to fluid, under a uniform electric field, which is the essence of electrophoresis.]

You’ll recall that LDL particles are also called “beta” particles and HDL particles are also called “alpha” particles. Now you see why.

This work set the stage for subsequent work, by a physicist named John Gofman, using the techniques of preparative and analytic ultracentrifugation to fully classify the major classes of human lipoproteins. The table below summarizes what was gleaned by these experiments.

lipoprotein characteristics
Cool, huh? Well, sort of. While this was an enormous breakthrough scientifically, it didn’t really have an inexpensive and quick test that could be used clinically the way, say, one could measure glucose levels or hemoglobin levels in patients routinely. What became crucial with Gofman’s discovery is that lipoproteins were now a recognized entity and they got their names according to their buoyancy: very low density, intermediate density, low density and high density.

There is more interesting history to this tale, but let’s fast-forward to where we are today. When you go to your doctor to have your cholesterol levels checked, what do they actually do?

Let’s start at the finish line. What do they report? The figure below is a representative result. It reports serum cholesterol (in total), serum triglycerides, HDL cholesterol (i.e., HDL-C), LDL cholesterol (i.e., LDL-C) and sometimes non-HDL-C (i.e., LDL-C + VLDL-C). But where do these numbers come from?
cholesterol_test
Blood is drawn into a tube called a serum separator tube (SST) and immediately spun in centrifuge to separate the blood from “whole blood” into serum (normally clear yellow, top) and blood cells (dark red, bottom). A gel film, from the SST, separates the serum and blood cells, as shown below. The tube is kept cool and sent from the phlebotomy lab to the processing lab.
SS tube
As early as the 1950’s scientists figured out clever chemical tricks to directly measure the content of total cholesterol in the serum. The chemical details probably are not interesting to non-chemists, but I was able to find a great paper from 1961 that details the methodology. The point is this: initially it was only possible to measure the total content of cholesterol (TC), or concentration to be technically correct, in plasma. By that I mean it is the total mass (weight of all the cholesterol molecules) of cholesterol trafficked within all of the lipoprotein species that exist in a specified unit of volume: in the United States, we measure this in milligram of cholesterol per deciliter of plasma abbreviated as mg/dL, or in the rest of the world as mmol/Liter or mmol/L. Why? Think back to our analogy from last week:
Cholesterol is a passenger on a ship — the “ship,” of course, being a lipoprotein particle. The early methods of measuring cholesterol had to break apart the hull of the ship to quantify the cargo. The assays to do so, like the one described above, were pretty harsh. If you had a bunch of LDL ships, HDL ships, VLDL ships, and IDL ships, these assays ripped them all apart and told you the sum total of the cargo. Obviously this was a great breakthrough in the day, but it was limited. From this assay, one could conclude, for example, that a person had 200 mg/dL of cholesterol hiding out in all their lipoprotein particles.

Good to know, but what next? It turns out there were two other important factors that could be measured directly in blood: triglycerides and the cholesterol content within the HDL particle, HDL-C. Early on laboratories could easily separate apoA-I-containing particles (i.e., HDL) from the apoB-containing particles (i.e., VLDLs, IDLs and LDLs), but they could not easily and economically separate the various apoB-containing particles from one another. A full description of these methods is not necessary to appreciate this discussion, but for those interested, methodologies can be found here (TG) and here (HDL-C).

Important digression for context
What becomes critical to understand for our subsequent discussions is that the apoB particles have the potential to deliver cholesterol into an artery wall (the problem we’re trying to avoid), and 90-95% of the apoB particles are LDL particles. Hence, it is LDL particle number (LDL-P or apoB) that drives the particles into the artery wall. Thus, physicians need to be able to quantify the number of LDL particles present in a given individual. For decades there was no way of doing that. Then LDL-C (read on) became available and it served as a way (not entirely accurate, but nonetheless a way) of quantitating LDL particles.
Back to the story
How can one figure out the concentration of cholesterol in the LDL particle? As you may recall from last week, LDL is the “ship” that carries the most cholesterol cargo. More importantly, as I mentioned above, it is also the key ship that traffics cholesterol directly into the artery wall. Thus, there has always been an enormous interest in knowing how much cholesterol is trafficked within LDL particles.

For a long time it was not possible to directly measure LDL-C, the cholesterol content of an LDL particle. However, we did know the following had to be true:

TC = LDL-C + HDL-C + VLDL-C + IDL-C + chylomicron-C + remnant-C + Lp(a)-C
where X-C denotes the cholesterol content of a respective cholesterol-carrying particle. There are 2 particles in the equation above that I didn’t specifically mention last week, the remnant particle and the Lp(a) particle (pronounced “EL – pee – little – a,” which sounds less silly than, “Lip-a”). Lp(a) is an LDL-like particle but with a special apoprotein attached to it, aptly called apoprotein(a), which is actually “attached” to the apoB molecule of a standard LDL particle. Think of Lp(a) as a “special” kind of LDL particle. As we’ll learn later in this series, Lp(a) particles are bad dudes when it comes to atherosclerosis.

“Remnants” are nearly-empty-of-triglyceride particles of chylomicrons and VLDL. In essence they are larger TG-rich particles that have lost a lot of their TG core content as well as surface phospholipids and are thus smaller than, or remnants of, their “parent particles.” Hence,they are cholesterol-rich particles. Under fasting conditions, in a not-too-terribly-insulin-resistant person, IDL-C, chylomicron-C, and remnant-C are negligible. Furthermore, in most people Lp(a)-C does not exist or is not very high.

So we’re left with this simplification:
TC ~ LDL-C + HDL-C + VLDL-C
which is clearly an improvement in convenience over the first equation. But what to do about that pesky VLDL-C?

There are a number of variations, but essentially a breakthrough (mid 1970s) formula, called the Friedewald Formula, estimates VLDL-C as one-fifth the concentration of serum triglycerides (some variants use 0.16 instead of one-fifth, or 0.20). This assumes all TG are trafficked in one’s VLDL particles and that a normally composed VLDL contains five times more TG than cholesterol.
Rearranging the above simplified formula we have:
LDL-C ~ TC – HDL-C – TG/5
Let’s plug in the numbers from the above figure, as an example. TC = 234 mg/dL; HDL-C = 48 mg/dL, and TG = 117 mg/dL. Hence, LDL-C is approximately 234 – 48 – 117/5 = 163 mg/dL.
Kind of a long run for a short slide, huh? Perhaps, but it is important to understand that when you go to your doctor and get a “cholesterol test,” odds are this is exactly what you’re getting.
Therefore LDL-C can be estimated knowing just TC, HDL-C, and TG, assuming LDL-C matters (hint: it doesn’t matter much in many folks).

Furthermore, what if the LDL particle is cholesterol-depleted instead of its normal state of being cholesterol-enriched? Unfortunately, especially in an insulin resistant population (i.e., the United States), both TG content within lipoproteins and the exchange of TG for cholesterol esters between particles is very common, and using this formula can significantly underestimate LDL-C. Worse yet, LDL-C becomes less meaningful in predicting risk, as I will address next week.

What about direct measurement of LDL-C?

To chronicle the entire history of direct LDL-C measurement is beyond the scope of this post. Many companies have developed proprietary techniques to measure LDL-C directly, along with apoB, and ultimately LDL-P. I’ll address two “major players” here: Atherotech and LipoScience.

Atherotech developed an assay, called a VAP panel (VAP stands for Vertical Auto Profile) to do everything described above, but also to directly measure the amount of cholesterol contained within the LDL particle. Furthermore, they have developed assays to directly measure the cholesterol in IDL particles, VLDL particles, and even Lp(a) particles. Below is a snapshot of how VAP reporting looks.
VAP results
A couple of things are worth mentioning:
  1. Subparticle cholesterol content information is also generated, including 2 different classes of HDL particles (HDL-2, HDL-3) and 4 different classes of LDL particles (LDL-1, LDL-2, LDL-3, LDL-4).
  2. LDL particles, based on the subparticle information, are classified as “pattern A,” “pattern B,” or “pattern A/B.” Pattern A implies more large, buoyant LDL particles, while pattern B implies more small, dense LDL particles.
Remember, though, while cholesterol mass concentration numbers may correlate with the number of particles, they often do not. They only convey the mass concentration of cholesterol molecules within all of the particle subtypes per unit of volume. VAP tests do not report the number of LDL or HDL particles, but they do attempt to estimate atherogenic particle number (apoB) using a proprietary formula based on subparticle cholesterol concentration and particle sizes. I should point out that the formula, to my knowledge, has not been validated in any study and not published in a peer reviewed journal.

A high estimate of apoB100 (i.e., what the VAP reports) is said to correlate with the actual measurement of apoB. Since apoB is found on each LDL particle, this serves as a proxy of LDL-P. The American Diabetic Associate and the American College of Cardiology Consensus Statement on Lipoproteins and the new National Lipid Association biomarker paper stipulates that apoB must be done using a protein immunoassay, not an estimate, such as that of VAP.

But how can one actually count the number of LDL particles and HDL particles?

There are several methods of doing this, but only one company, LipoScience, has the FDA approved technology to do so using nuclear magnetic resonance spectroscopy, or NMR for short. The other available methodologies are ion mobility transfer and ultracentrifugation (by Quest) and separation of LDL particles with particle staining (by Spectracell). Virtually all guidelines (e.g., ADA, ACC, AACC and NLA) only advise LDL-P via NMR at this time.

NMR, which is the basis for not only how to count lipoprotein particles, but also diagnostic tests such as MRI scans, is really one of my favorite technical topics. In residency I wrote a surgical handbook and on page145-146, if you’re interested, you can read a brief description of how MRI technology works, which will explain how NMR technology can actually count lipoprotein particles.
As an aside, and just to give you an idea of what a great sport my wife is, I wrote this surgical handbook over the course of a year while in residency. To do so, I had to read approximately 8,000 pages of surgical textbooks and try to distill them down to just this 160 page summary. Doing so required reading about 22 pages every day while working about 110 hours per week, typical of a surgical residency “back in the day.” Besides exercising, I spent every single moment of my “free” time reading for and writing this handbook. Finally, a few months into it, my wife asked, “Why the hell are you doing this? You never watch TV, you never go out, you never do anything else!” I responded that it was the best way I could learn this material, but also, that I wanted to have a legacy when I left residency. Half joking, I asked her, “What’s your legacy?” Blank stare. A few months later, for Valentine’s Day, she gave me this t-shirt. I think it’s safe to say not a single person has read this handbook. So much for my legacy…
What's your legacy
A brief explanation of how NMR works to count (and measure) particles can also be found here.
Below is a snapshot of how NMR reporting looks. This particular report is from Health Diagnostics Laboratory (HDL), Inc. LipoScience performs the actual NMR test, but HDL, Inc. runs a number of complimentary biomarkers I will discuss in subsequent posts. I now use the HDL, Inc. test exclusively for reasons I will explain later.
NMR data
In addition to counting the actual total number of LDL particles (LDL-P) and HDL particles (HDL-P) per liter, HDL, Inc. (not LipoScience) directly measures apoB and apoA-I. Furthermore, the size of each particle is measured using NMR in nanometers (to give you a sense of how small these things are, and why we need to use nanometers to measure them, about 1.3 million LDL particles stacked side-by-side would measure only one inch).

The final point I’ll make about the value of NMR reported subparticle sizes and diameters is particularly telling when it comes to insulin resistance. In the panel below, you can see that this person has small VLDL particles, small HDL particles, and LDL particles. Why is this interesting? The presence of increased large VLDL-P, large VLDL size, increased small LDL- P, small LDL size, reduced large HDL-P, small HDL size are early markers for insulin resistance, and such findings may actually precede more conventional signs of insulin resistance (insulin levels, glycemic abnormalities) by several years. In other words, the number and size of the lipoprotein particles is perhaps the earliest warning sign for insulin resistance.
LP-IR data

In summary

  1. The measurement of cholesterol has undergone a dramatic evolution over the past 70 years with technology at the heart of the advance.
  2. Currently, most people in the United States (and the world for that matter) undergo a “standard” lipid panel which only directly measures TC, TG, and HDL-C. LDL-C can be measured directly, but is most often estimated.
  3. More advanced cholesterol measuring tests do exist to directly measure LDL-C (though none are standardized), along with the cholesterol content of other lipoproteins (e.g., VLDL, IDL) or lipoprotein subparticles.
  4. The most frequently used and guideline recommended test that can count the number of particles is the NMR LipoProfile. In addition to counting the number of particles – the most important predictor of risk – NMR can also measure the size of each lipoprotein particle, which is valuable for predicting insulin resistance in drug naïve patients, before changes are noted in glucose or insulin levels.
I know some of you are getting antsy. I thank you for your patience, and I hope you appreciate that it was a necessary step to get through this somewhat technical material and nomenclature. Next week we’ll get to the “fun” stuff – what does all of this cholesterol have to do with heart disease?

In addition, we’ll get further into the importance of using LDL-P as the best predictor of risk. If anyone wants to read up on another very important topic, especially for understanding why LDL-P is more important to know than LDL-C, get familiar with the concepts of discordant and concordant variables. You’ll be hearing a lot about these.
================================================================
Read the complete article here.

Be sure to read his complete series on cholesterol.

Previously, in Part I and Part II of this series, we addressed 4 concepts:
#1What is cholesterol?
#2What is the relationship between the cholesterol we eat and the cholesterol in our body?
#3Is cholesterol bad?
#4 How does cholesterol move around our body?

Tuesday, March 13, 2012

Putting The Myth To Rest: There Is No Such Thing As Bad Cholesterol


Putting The Myth To Rest: There Is No Such Thing As Bad Cholesterol

Cholesterol Molecule Putting The Myth To Rest: There Is No Such Thing As Bad Cholesterol

by PreventDisease.com
Perhaps one of the biggest health myths propagated in western culture and certainly in the United States, is the correlation between elevated cholesterol and cardiovascular disease (CVD). Unfortunately, despite dozens of studies, cholesterol has not been shown to actually cause CVD. To the contrary, cholesterol is vital to our survival, and trying to artificially lower it can have detrimental effects, particularly as we age.

Cholesterol seems to be one of those things that strikes fear into the hearts of many, so to speak. We have become obsessed with eating foods low in cholesterol and fat. Ask almost anyone, and they can tell you their cholesterol levels.

What is certain is that the ‘little knowledge’ that the media often imparts means many folks assume cholesterol is simply a ‘bad’ thing. Alternately, a good number of us may have heard the terms ‘good’ cholesterol and ‘bad’ cholesterol bandied about without knowing much about what this really means. In fact it is a fairly safe bet that if you asked anyone on the street for his or her instinctive response, if asked about cholesterol, they would probably say that we simply need to ‘reduce it’.

The ‘noddy-science’ offered by marketing men to a generally scientifically-naive public has led many people to believe that we should replace certain food choices with specially developed products that can help ‘reduce cholesterol’. Naturally this comes at a price and requires those who can afford it to pay maybe four or five times what a ‘typical ordinary’ product might cost. But is this apparent ‘blanket need’ to strive towards lowering our cholesterol justified? And, indeed, is it healthy?

For anyone who has had the official diagnosis of ‘high cholesterol’ in their bloodstream, they may even have embarked upon a program of medicinal intervention. In fact it is quite likely that they may have joined the legions of long-term pill-poppers who are already lining the pockets of the profit-oriented pharmaceutical giants.

But let’s take a moment, now, to review some of the facts and fallacies about the much-maligned substance: cholesterol.

Cholesterol is needed to make hormones. Without it we would not produce estrogen, progesterone or testosterone. It is vital for the functioning of nerve synapses and provides the structural integrity for our cell membranes. Cholesterol is used by the skin to help prevent water evaporation and to make our skin waterproof. Vitamin D is synthesized from cholesterol. And bile, used for fat digestion, consists mostly of cholesterol. The liver produces about 90 percent of the cholesterol in our bodies; only 10 percent comes from diet. If we eat too much cholesterol, the liver decreases the output of cholesterol.

Cholesterol is a naturally occurring lipid. This means it is a type of fat or oil and it is in fact an essential component in creating and sustaining the membranes of the cells of all bodily tissues. So this alone means we need cholesterol to survive! Most of the cholesterol that is found in our bodies is actually naturally manufactured within our own cells. However there is also an additional contribution that we get from external ‘nutritional’ sources – the foods we consume. In a typical diet providing around 400mg of cholesterol per day from food sources, about half to two-thirds of this amount is actually absorbed through the process of digestion. The body will normally secrete about a gram (1000mg) of cholesterol per day into the bile via the ducts, and approximately three-fifths of this is then re-absorbed.

Where our tissues or organs are a particularly dense complex of cells, which have closely packed cell membranes, there will naturally be higher levels of cholesterol. The key organs that need, and contain, these higher amounts of cholesterol include the liver, the brain and the spinal cord – none of which would work well if we reduced cholesterol too much!

In effect cholesterol plays an essential role in the development and maintenance of healthy cell walls. It is also a critical factor in the synthesizing of steroid hormones, which are a key factor in our natural physical development.

Being a lipid, cholesterol is fat-soluble, but it is not soluble in blood. However it needs to be transported around the body to the places where it can be utilized. This is why, in order to be moved around, it must become ‘associated’ with certain lipoproteins which feature a water-soluble (therefore ‘blood transportable’) coat of proteins. There are two key types of lipoproteins that transport cholesterol around the body: low-density and high-density variants. The essential cellular function of cholesterol requires that sufficient amounts are manufactured by specialized sub-systems (or organelles) within the body’s cells called the endoplasmic reticulum. Alternatively, the cholesterol we need must be derived from our diet. During the process of ‘digestion and assimilation’ of foods, it is the low-density lipoprotein (LDL) that carries dietary cholesterol from the liver to various parts of the body.

When there is sufficient cholesterol for cellular needs, the other key transport mechanism in this amazing ‘logistics system’ – high-density lipoprotein (HDL) – can take cholesterol back to the liver from where any unnecessary excess can be processed for excretion.

The ‘noddy-science’ of the so-called ‘functional food’ manufacturers would have us believe that there is such a thing as ‘bad’ cholesterol and ‘good’ cholesterol. This is, in fact, totally untrue. The cholesterol itself, whether being transported by LDL or HDL, is exactly the same. Cholesterol is simply a necessary ingredient that is required to be regularly delivered around the body for the efficient healthy development, maintenance and functioning of our cells. The difference is in the ‘transporters’ (the lipoproteins HDL and LDL) and both types are essential for the human body’s delivery logistics to work effectively.

Problems can occur, however, when the LDL particles are both small and their carrying capacity outweighs the transportation potential of available HDL. This can lead to more cholesterol being ‘delivered’ around the body with lower resources for returning excess capacity to the liver.

LDL can vary in its structure and occur in particles of varying size. It is the smaller LDL particle sizes that can easily become ‘trapped’ in the arteries by proteoglycans, which is, itself, a kind of ‘filler’ found between the cells in all animal and human bodies. This can then cause the cholesterol the LDL carries to contribute to the formation of fatty deposits called ‘plaques’ (a process known as atherogenesis). As these deposits build up, they restrict the arteries’ width and flexibility. This causes an increase in blood pressure and can also lead to other cardiovascular problems such as heart attacks or strokes.

The LDL itself is consequently sometimes referred to as ‘bad cholesterol’, but you can now appreciate the fact that this is simply incorrect. In fact LDL, HDL and cholesterol are all essential to our health. However, it seems that it has become common for humans to have a preponderance of ‘unhealthily’ small LDL particles, which can become a precursor to heart and arterial disease due to the mechanisms described. It is apparently healthier to have a smaller number of larger LDL particles carrying the same quantity of cholesterol than a large number of small LDL particles might transport, but for some reason this is less common. This is an interesting area that demands more research.

When LDL becomes retained by the glycol-proteins in the arteries it is subject to being oxidized by ‘free radicals’. This is when the process can become health threatening. It has therefore been suggested that increasing the amount of antioxidants in our diet might effectively ‘mop up’ free radicals, and consequently reduce this harmful oxidation. Although the idea of consuming foods rich in antioxidants, or even using supplements, is now widely promoted, the scientific evidence for their efficacy still remains to be fully established.

Another point to consider is the occurrence of substances called ‘very-low-density-lipids’ or VLDL, also known as triglycerides. VLDL is converted to LDL in the bloodstream and therefore contributes towards increased levels of LDL and to subsequent potential cholesterol-related health problems. This is why triglycerides are usually measured when a cholesterol test of your blood is undertaken.

The production of VLDL in the liver – which amounts to a combination of cholesterol and low-density apolipoprotein – is exacerbated by the intake of fructose. Fructose is the type of sugar found in many fruits, it is also a component of sucrose and of the widely used food ingredient high-fructose corn syrup. This implies that anyone whose LDL or triglyceride levels are unduly high should cut back on those sweet sugary snacks, and even on the sweeter, fructose laden fruits; not simply reduce their intake of fatty foods!

Vitamin B3, otherwise known as niacin, on the other hand, actually lowers the amount of VLDL, and therefore also LDL. In addition, niacin helps to stimulate the production of helpful HDL, the lipoprotein that carries excess cholesterol back to the liver for excretion. However, in keeping with the best traditions of consuming ‘all things in moderation’, currently recommended upper limits for daily intake of niacin is 35mg, given that it can have toxic effects in larger amounts. Even so, medical professionals have been known to prescribe niacin in doses as high as 2g, up to three times a day, for treatment of those with dangerously high blood cholesterol levels. Naturally you should never self-medicate with high doses of niacin without taking appropriate medical advice.

Niacin in the diet is typically derived from high protein foods including liver and other meats, as well as significant amounts being found in certain nuts and whole grains.

However one of the fashionable types of pharmaceutical drugs of recent times, introduced to treat the apparently increasing incidence of high cholesterol levels particularly in the West, are Statins. Most likely you have a friend or relative taking these useless drugs (Lipitor, Mevecor, Crestor, etc.) to lower cholesterol. Statin medications are the number-one-selling drugs in the world. They work by interfering with the liver function and reducing the production of LDL. But Statins are a questionable innovation on at least a couple of accounts. Firstly they are not without side-effects: they can, for example, lead to the breakdown of major muscular material, which can ultimately overwhelm the kidneys and even cause acute renal failure.

Statins also appear to reduce the body’s natural levels of the vitamin-like, cellular protection agent known as Co-enzyme Q10. This benzoquinone plays an important role in cellular energy release, particularly in hard worked areas like the lungs, liver and heart. CoQ10 (as it is sometimes called) has also been shown to protect the brain against neurological degeneration. But perhaps most interestingly, with respect to cholesterol, CoQ10 also acts as an antioxidant, particularly active in protecting the system against LDL oxidation and the potential problems associated with this as described above. So whilst Statins might provide a reduction in LDL per se, they might also be causing more problems in the long-term. Naturally, as with many modern drugs, they generally have to be taken for the long-term by anyone who has been prescribed them.

What is particularly disturbing about Statins is, perhaps, the fact that they may be seen as a ‘quick fix’ for unhealthily high LDL, and consequently cholesterol levels throughout the body. They need to be taken over a long period – which makes them very profitable for drugs manufacturers. But they may also be prescribed without the over-arching message that in order to address any cholesterol problem ‘naturally’, the sufferer must change their lifestyle and diet. Statins can seem an easy option but may indeed merely be the beginning of a process where the ‘negative health pay-off’ is simply delayed rather than actively defused! That is not to say that in extreme cases of high blood cholesterol, or hypercholesterolemia, there may not be a useful role for Statin therapy when natural strategies fail or do not prove effective, or feasible.

In truth, and in summary, cholesterol is an important and essential substance that we need for health at a cellular level. It is most likely that any imbalance in our cholesterol transport system comes down to long-term poor dietary and exercise habits. Ensuring that we consume some extra anti-oxidant foods, along with including niacin rich foods, might well be of benefit. But it is perhaps most important to recognize that deliberate and continued levels of activity and the consumption of a healthful diet is a better solution than questionable quick-fix drugs, if we ever are diagnosed with levels of cholesterol and triglycerides that might give cause for concern.
====================================================================
Read the complete article here.