Friday, July 25, 2014

Niacin is/was/will always be the Good One - Penberthy

Laropiprant is the Bad One; Niacin is/was/will always be the Good One

by W. Todd Penberthy, PhD

(OMNS July 25, 2014) Niacin has been used for over 60 years in tens of thousands of patients with tremendously favorable therapeutic benefit (Carlson 2005). In the first-person NY Times best seller, "8 Weeks to a Cure for Cholesterol," the author describes his journey from being a walking heart attack time bomb to a becoming a healthy individual. He hails high-dose niacin as the one treatment that did more to correct his poor lipid profile than any other (Kowalski 2001). Many clinical studies have shown that high doses of niacin (3,000-5,000 mg plain old immediate release niacin taken in divided doses spread out over the course of a day) cause dramatic reductions in total mortality in patients that experienced previous strokes (Creider 2012). High dose niacin has also been clinically proven to provide positive transformational relief to many schizophrenics in studies involving administration of immediate release niacin in multi-thousand-milligram quantities to greater than 10,000 patients (Hoffer 1964; Osmond 1962). Most importantly, after 60 years of use the safety profile for niacin (especially immediate release niacin) remains far safer than the safest drug (Guyton 2007).

Bad Reporting

So why has the media suddenly presented the following niacin alarmist headlines in response to the most recent study in the New England Journal of Medicine?
"Niacin drug causes serious side effects, study says" - Boston Globe, 7/16/14
"Niacin safety, effectiveness questioned in new heart study" - Healthday News, 7/17/14
"Doctors say cholesterol drug risky to take" - Times Daily, 7/16/14
"Niacin risks may present health risks claim scientists" - Viral Global News, 7/17/14
"Studies reveal new niacin risks" - Drug Discovery and Development, 7/17/14
"No love for niacin" - Medpage Today, 7/17/14
"Niacin could be more harmful than helpful" - Telemanagement, 7/18/14
The truth of the matter is that the study quoted and used laropiprant (trade names: Cordaptive and Tredaptive). Laropiprant is a questionable drug and the results say next to nothing about niacin. The study compared over 25,000 patients treated with either niacin along with laropiprant, or placebo. The patients in this study had previous history of myocardial infarction, cerebrovascular disease, peripheral arterial disease, or diabetes mellitus with evidence of symptomatic coronary disease. The side effects observed in those who took the laropiprant-niacin combination were serious and included an increase in total mortality as well as significant increases in the risk for developing diabetes.
For responsible reporters, this should have raised the question of which compound, the drug laropiprant, or the vitamin niacin, is the culprit.
Such side effects have not been seen in over 10 major clinical trials of niacin involving tens of thousands of patients, not in over 60 years of regular usage of niacin in clinics across the country. However, niacin causes a warm flush on the skin. Some people find the warm niacin flush uncomfortable, although many people enjoy this temporary sensation. In this study, niacin was given in combination with laropiprant, a drug that prevents the niacin flush. By including a dose of laropiprant along with the niacin to eliminate the flush, the thought was that more patients could benefit from niacin without complaint. But in fact the niacin flush is healthy. A reduced flush response to niacin is a diagnostic for increased incidence of schizophrenia, and this assay is now widely available (Horrobin 1980; Messamore, 2003; Liu 2007; Smesny, 2007).

Problems with Laropiprant

So what about the other half of the combo, the drug laropiprant?
  • Laropiprant has never been approved by the FDA for use in the USA and when taken alone has been shown to increase gastrointestinal bleeding. *
  • Laropiprant interferes with a basic prostaglandin receptor pathway that is important for good health.
  • Last year Merck announced it would withdraw laropiprant worldwide due to complaints from continental Europe. Therefore the clinical trials in this most recent study could only be performed in the UK, Scandinavia, and China.
So why did so many media outlets and even some MDs conclude that niacin was the problem? Simple: none of the headlines mentioned laropiprant, which is quite clearly the real culprit that caused the side effects reported. The simplest way to put it is to say that sensational stories promulgated by the media are quite often completely wrong. This suggests a hidden agenda.
Confusing and fantastical headlines can increase readership for hysteria-based business models. Which headline is likely to garner the greatest attention: "Laropiprant is a Dangerous Medication that has Not Been Approved by the FDA" or "Niacin Causes Serious Side Effects"? The correct headline would be, "Niacin doesn't cause serious side effects; drugs do."

Why the B Vitamins Are So Important

The B vitamins were discovered due to terrible nutritional epidemics: pellagra (niacin/vitamin B3 deficiency) and beriberi (thiamine/vitamin B1 deficiency). We are very sensitive to a deficiency of niacin. Over 100,000 people died in the American south in the first two decades of the 20th century due to a lack of niacin in their diet. It was perhaps the worst nutritional epidemic ever observed in modern times, and was a ghastly testimony to how vulnerable the human animal is to niacin deficiency. The pellagra and beriberi epidemics took off shortly after the introduction of processed foods such as white rice and white flour. Poor diets, mental and physical stresses, and certain disease conditions have all been proven to actively deplete nicotinamide adenine dinucleotide (NAD) levels, causing patients to respond favorably to greater than average niacin dosing.
How is it possible that niacin can be useful for many different conditions? It seems too good to be true. The reason is that niacin is necessary for more biochemical reactions than any other vitamin-derived molecule: over 450 different gene-encoded enzymatic reactions (UniproKB database of the Swiss Institute of Bioinformatics; (Penberthy 2013)). That is more reactions than any other vitamin-derived co-factor! Niacin is involved in just about every major biochemical pathway. Some individuals, who have a genetically encoded amino acid polymorphism within the NAD binding domain of an enzyme protein, will have a lower binding affinity for NAD that can only be treated by administering higher amounts of niacin to make the amount of NAD required for normal health. Genetic differences such as these are why many individuals require higher amounts of niacin in order for their enzymes to function correctly (Ames 2002).
It is a deadly shame that the media so often ignores this information. Fortunately, many physicians will see through the recent headlines that give misinformation about niacin, having already personally witnessed how effective high dose niacin therapy is for preventing cardiovascular disease.

Nutrients are the Solution, Not the Problem

So what is the solution? At the end of the day the data on patients with problem cholesterol/LDL levels still support 3,000-5,000 milligrams of immediate-release niacin as the best clinically-proven approach to maintaining a healthy lipid profile. Niacin in 250mg to 1000mg doses can be purchased inexpensively from many sources. Extended-release niacin is the form of niacin that is most frequently sold by prescription, but it has more side effects than immediate release (plain old) niacin. . . and it costs much more.
Tangential to niacin but pointed to cardiovascular disease, conventional medicine is finally beginning to respect chelation therapy as an approach owing to the recent unparalleled positive clinical results for cardiovascular disease patients with diabetes - up to 50% prevention of recurrent heart attacks and 43% reduction in death rate from all causes (Avila 2014). Some times chelation therapy can be expensive. However, there are other inexpensive approaches include high dose IP6 therapy that are yet to be conventionally appreciated. Other supplements desirable for any ideal cardiovascular disease: a nutritional regimen include additional vitamin C, magnesium, coenzyme Q, fat soluble vitamins (A, D, E, and K2), and grass-fed organic butter. Your ideal intake varies with your individuality.
Nutrients such as niacin you need. Media misinformation you don't.
Read the complete article here.

Monday, July 21, 2014

FDA Approves Dangerous and Worthless Cholesterol Drug - Brownstein

FDA Approves Dangerous and Worthless Cholesterol Drug

by Dr. David Brownstein

On May 3, 2013, the FDA approved a Big Pharma Cartel founding member Merck drug Liptruzet.  Liptruzet is a combination drug of Zetia and Lipitor.  I wrote to you about the failure of Zetia in three separate blog posts.  They can all be found by clicking here:  http://blog.drbrownstein.com/?s=zetia.
Zetia is a failed drug.  It should never be prescribed and should have been pulled from the market years ago.  There is no excuse for any doctor prescribing Zetia for any condition.  Zetia works by blocking cholesterol absorption in the gut.  Conventional doctors believe that drug therapies that lower cholesterol levels reduce the risk of heart disease.  However, Zetia, which has been around for over 10 years, has never been shown to lower the risk of developing a heart attack or stroke.  Furthermore, Zetia has never been shown to prolong life.

Why the FDA would approve this combination of Zetia and Lipitor is beyond belief.  The previous combination of Zetia and Zocor, known as Vytorin, was proven to be a colossal failure in multiple studies—see my previous blog posts.

FDA’s action is a perfect example of why we spend more money on health care than any other people on the planet.  Liptruzet will cost $5.50 per pill.  This means a patient prescribed Liptruzet will spend over $2,000.00 per year on a worthless drug that will be associated with side effects such as muscle aches and pains, memory loss, and neurological disorders.  We take too many ineffective drugs that are too expensive.  Do all of these drugs translate into better healthcare outcomes?  Heck no.  As compared to every other wealthy Western country, we finish last or near the bottom on every single health indicator.  In Liptruzet’s case, there is no justifiable reason for the FDA to approve it.  This is another example, amongst many, of why the FDA should be disbanded.  The FDA gives false credibility to Big Pharma.

If you are on Zetia, I suggest talking to your doctor about stopping it.  Ask him/her for any studies showing a clinical benefit such as a significantly lowered risk for heart disease, heart attack, stroke, or increased longevity.  I can assure you that you won’t be getting any articles from your doctor since they don’t exist.   More information about cholesterol-lowering medications can be found in my book, Drugs That Don’t Work and Natural Therapies That Do
=======================================================Read the complete article here.

Do statins prevent or promote cancer? - Current Oncology

Do statins prevent or promote cancer?

Mark R. Goldstein MD FACP, Medical Director, Fountain Medical Court, 9410 Fountain Medical Court, Suite
The Editor, Current Oncology December 24, 2007
In their commentary, Drs. Takahashi and Nishibori discuss putative antitumour effects of statins. However, prospective data suggest that statins actually increase cancer in certain segments of the population. Additionally, new findings regarding the immunomodulatory effects of statins may explain the mechanism by which that increase occurs.

Statins increase the number of regulatory T cells (Tregs) in vivo by inducing the transcription factor forkhead box P3. Although that increase may be beneficial in stabilizing atherosclerotic plaque by reducing the effector T-cell response within the atheroma, it might impair both the innate and adaptive host antitumour immune responses. Not surprisingly, the number of Tregs present in many solid tumours correlate inversely with patient survival.

Indeed, analysis of large randomized statin trials demonstrate a highly significant (p = 0.009) inverse association between achieved low-density lipoprotein cholesterol levels and cancer. Close inspection of statin trials reveal the specific populations at risk for the development of incident cancer with statin treatment. These include the elderly and people with a history of breast or prostate cancer,. Furthermore, statin-treated individuals undergoing immunotherapy for cancer may be at increased risk for worsening cancer.

The elderly are relatively immunosuppressed and are more likely to harbour occult cancers. In the prosper (Prospective Study of Pravastatin in the Elderly at Risk) trial, a 3.2-year prospective study of pravastatin for cardiovascular disease prevention in the elderly (mean age at trial entry: 75 years) at high risk for cardiovascular disease, cancer incidence was significantly increased in subjects randomized to pravastatin. In fact, the increase in cancer mortality equalled in magnitude the decrease in cardiovascular disease mortality in the statin-treated patients, leaving all-cause mortality unchanged. Likewise, post hoc analysis of the lipid study, a 6-year prospective trial of pravastatin in individuals with cardiovascular disease, revealed a significant increase in cancer incidence in the elderly subjects (age: 65–75 years) randomized to pravastatin. In a secondary analysis of the tnt (Treating to New Targets) study, elderly subjects randomized to high-dose atorvastatin (80 mg daily) versus low-dose atorvastatin (10 mg daily) demonstrated a trend toward increased death, largely from an increase in cancer mortality. Therefore, the increase in incident cancer in the elderly might be dose-related. It is highly plausible that the elderly are particularly sensitive to a statin-induced increase in Tregs, further impairing their immune response to cancer.

An alarming increase in breast cancer incidence, some of which were recurrences, was seen in women randomized to pravastatin in the care trial Thereafter, cancer was an exclusion criterion in randomized statin trials. In clinical practice, however, it is not infrequent to find an association between recurrence of breast cancer and concurrent statin therapy. Long-term follow-up (10 years after trial completion) of woscops (West of Scotland Coronary Prevention Study), a 5-year prospective trial of pravastatin in hypercholesterolemic men, revealed an increase in prostate cancer in the men who were randomized to pravastatin therapy. That finding indicates that cancers may become evident a decade or more after treatment with statins. Treg increases have been associated with both breast and prostate cancers,, and therefore, it is highly plausible that the increase in cancers seen with statin therapy is related to a statin-induced increase in Tregs.

Statin therapy has been associated with tumour progression leading to radical cystectomy in patients treated for bladder cancer with bacille Calmette–Guérin immunotherapy. That association may be likewise due to a statin-induced increase in Tregs, resulting in impaired host antitumour immunity.
Statin trials have typically randomized subjects free of prevalent cancers and have been about 5 years in duration. Long-term follow-up data are limited, particularly for the development of cancer. Statins are now promoted for widespread use in adults of all ages and at high doses, potentially for decades. Importantly, they are used in individuals with other significant comorbidities such as cancer. Unfortunately, the post-market surveillance of drugs has been poor. Because cancer is highly prevalent in the population, particularly in the elderly, a statin-induced increase in cancer incidence will likely go unrecognized.

Long-term prospective data are needed on the feasibility of statin therapy in the very elderly, the immuno-suppressed, and those with prevalent cancer. Furthermore, long-term outcome data are needed in young individuals treated with statins for prolonged time periods. Perhaps a constant increase in Tregs over years, even in the young, will weaken host antitumour immune surveillance and increase the risk for various cancers.

In conclusion, we feel that there is ample evidence that statins may promote cancer in certain segments of the population. Currently, the indications for statin therapy are based on lipoprotein levels, prevalent cardiovascular disease, other vascular risk factors, and family history. Maybe it is time for a new paradigm that also includes age extremes, prevalent cancer, a past history of cancer, and overall immunocompetence.


1. Takahashi HK, Nishibori M. The antitumour activities of statins. Curr Oncol. 2007;14:246–7. [PMC free article] [PubMed]
2. Mausner–Fainberg K, Luboshits G, Mor A, et al. The effect of hmg-coa reductase inhibitors on naturally occurring cd4+cd25+ T cells. Atherosclerosis. 2007 [Epub ahead of print] [PubMed]
3. Goronzy JJ, Weyand CM. Immunosuppression in atherosclerosis: mobilizing the opposition within. Circulation. 2006;114:1901–4. [PubMed]
4. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. cd4+cd25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104:19446–51. [PMC free article] [PubMed]
5. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007;117:1167–74. [PMC free article] [PubMed]
6. Yakirevich E, Resnick MB. Regulatory T lymphocytes: pivotal components of the host antitumor response. J Clin Oncol. 2007;25:2506–8. [PubMed]
7. Alsheikh–Ali AA, Maddukuri PV, Han H, Karas RH. Effect of the magnitude of lipid lowering on risk of elevated liver enzymes, rhabdomyolysis, and cancer: insights from large randomized statin trials. J Am Coll Cardiol. 2007;50:409–18. [PubMed]
8. Shepherd J, Blauw GJ, Murphy MB, et al. on behalf of the prosper (Prospective Study of Pravastatin in the Elderly at Risk) study group. Pravastatin in elderly individuals at risk of vascular disease (prosper): a randomised controlled trial. Lancet. 2002;360:1623–30. [PubMed]
9. Hunt D, Young P, Simes J, et al. Benefits of pravastatin on cardiovascular events and mortality in older patients with coronary heart disease are equal to or exceed those seen in younger patients: results from the lipid trial. Ann Intern Med. 2001;134:931–40. [PubMed]
10. Wenger NK, Lewis SJ, Herrington DM, Bittner V, Welty FK. on behalf of the Treating to New Targets Study Steering Committee and Investigators. Outcomes of using high- or low-dose atorvastatin in patients 65 years of age or older with stable coronary heart disease. Ann Intern Med. 2007;147:1–9. [PubMed]
11. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335:1001–9. [PubMed]
12. Ford I, Murray H, Packard CJ, Shepherd J, Macfarlane PW, Cobbe SM. on behalf of the West of Scotland Coronary Prevention Study Group. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2007;357:1477–86. [PubMed]
13. Hoffmann P, Roumeguère T, Schulman C, van Velthoven R. Use of statins and outcome of bcg treatment for bladder cancer. N Engl J Med. 2006;355:2705–7. [PubMed]
14. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211:144–56. [PMC free article] [PubMed]
15. Winer EP, Harris JR, Smith BL, D’Alessandro HA, Brachtel EF. Case records of the Massachusetts General Hospital. Case 32-2007. A 62-year-old woman with a second breast cancer. N Engl J Med. 2007;357:1640–8. [PubMed]
Read the complete article here.

Wednesday, July 9, 2014

Low Cholesterol Leads to an Early Death - FallonMorell

Low Cholesterol Leads to an Early Death: Evidence From 101 Scientific Papers

This book is a sequel to Cholesterol and Saturated Fat Prevent Heart Disease: Evidence from 101 Scientific Papers by the same author (and given a Thumbs Up review in Wise Traditions, Summer 2013). Evans provides studies in chronological order showing that the lower your cholesterol, the earlier you die; that high levels of both “good” and “bad” cholesterol help you to live longer; that high cholesterol does not cause cardiovascular disease; that low cholesterol leads to an early death in many diseases; and that low cholesterol leads to an increased prevalence of many diseases.
Some gems from Evans’ book: A 1992 study of over three hundred fifty thousand men, aged thirty-five to fifty-seven, followed for twelve years, found that higher cholesterol levels were associated with lower death rates; a five-year study published in 1989 found that low cholesterol increases the risk of death by at least 340 percent in elderly women; a twenty-year study published in 2001 found that those with the lowest cholesterol levels have a 35 percent increase in death rates compared to those with the highest cholesterol levels; and a 1998 study found that low cholesterol levels are associated with higher rates of many infectious diseases including hepatitis, appendicitis, digestive and liver infections, kidney and urinary tract infections, venereal disease and musculo-skeletal infections. None of these important studies got front-page billing in the media; meanwhile the anti-cholesterol juggernaut rolls on.

This book represents a great compilation of studies we never hear about and is enhanced by an amusing foreword by Tom Naughton, producer of the movie Fat Head. Thumbs up!
Read the complete article here.

This book is available here.

Monday, July 7, 2014

Merck Uses Legal Threats To Stifle Negative Advice About Zetia And Vytorin

Merck Uses Legal Threats To Stifle Negative Advice About Zetia And Vytorin In Italy

In response to repeated legal threats, a public health doctor in Italy has withdrawn advice to curtail use of a controversial drug. The drug, ezetimibe, is a key ingredient in Zetia and Vytorin, which is manufactured by Merck Merck. The cholesterol-lowering drug has been the subject of fierce controversy because it has never been shown to improve clinical outcomes. Despite the controversy, in 2013 the drugs had combined sales of more than $2.6 billion.
Read the complete article here.

Friday, July 4, 2014

How do statin proponents deal with debate? They stifle it - Briffa

How do statin proponents deal with debate? They stifle it.

Last month, one of my blog posts featured a letter written by a group of doctors, expressing their concerns about the mooted expansion of statin therapy. The letter detailed six major objections to the plan, including the mass-medicalization of millions of healthy individuals, the unreliability of the evidence regarding the adverse effects of statins, and the facts that almost all the evidence is industry-funded and that multiple conflicts of interest exist on the ‘expert committee’ that is adjudicating on the statin issue. The letter received widespread coverage in the press and other media, and I think it did much to stoke the flaming debate that some have described as the ‘statin wars’.

Those strongly supportive of the plans to widen statin prescriptions are hardly going to go away without a fight, though. And this week six professors convened a press briefing at the Science Media Centre to put forward their arguments. The briefing was reported in the British Medical Journal this week [1].

Two of the ‘usual suspects’ were Professor Sir Rory Collins (head of the Cholesterol Treatment Trialists collaboration) and Professor Peter Weissberg (medical director of the British Heart Foundation).

One of Professor Collins’ gripes was, apparently, that “misrepresenting the evidence” will have a negative impact on people who are at high risk of cardiac events. He is quoted as saying: “It’s perfectly reasonable to debate whether patients at lower risk should get statins or not, but it’s inappropriate to misrepresent the evidence.”

He redoubled his assertion that rates of ‘myopathy’ are much lower than some people state. However, he is referring to the incidence of muscle problems where the threshold of ‘abnormal’ is when levels of the enzyme used to assess muscle damage (creatinine kinase) is at least 10 times the upper limit of normal. Professor Sir Rory Collins is apparently disinterested unless muscles are in near-meltdown. We can, I suppose, just ignore those poor unfortunates with less biochemical aberrations even though their symptoms are real and often debilitating. I think it’s clearly business as usual for Rory Collins, who makes claims that some are misleading the public while I think he, ahem, continues to mislead the public.

Professor Weissberg tells us that the “…the critics are wrong. They’ve retracted, they’re wrong.” Except, that the only thing that has been retracted were the misleading representations of statin side-effects as reported in one piece of research. All the major objections detailed in the original letter stand until someone properly disputes them.

With regard to these, Professor Weissberg calms any concerns about industry involvement in the evidence base, because drug companies only paid people to do the studies, rather than the drug companies doing the studies themselves. So, nothing to concern ourselves with here.

He adds that: “The biggest threat to good medicine is prejudice and anecdote.” I have some sympathy for this view, but boy would I like to see Professor Weissberg stay away from prejudice and anecdote myself. It was not so long ago that he made claims to support statins using data that did not support the use of statins at all.

And perhaps the most telling thing of all are the comments that come from Fiona Fox, director of the Science Media Centre. Apparently, only pro-statin experts were invited to the briefing. In defence of this tactic, Ms Fox tells us that the “vast majority” of cardiac and statin experts believed that the evidence was overwhelming, and that it was not the centre’s job to provide a platform to a minority who did not and thereby project a false image that the debate was in equipoise (when it was not).
First of all, I wouldn’t be too sure that the evidence is overwhelming or that the pro-statin camp is in the great majority.  And even if there things were true, is that a reason to stifle debate and allow no right of reply?

Do these tactics suggest that Professors Collins and Weissberg and the rest of their merry band of men have true confidence in their position? I personally doubt it, and believe that their attempt to shut down debate suggests they may be desperate not to have the weakness of the data and their arguments revealed in front of their very own eyes.

1. Hawkes N, et al. Six professors back NICE guidance on extending use of statins. BMJ 2014;349:g4380
Read the complete article here.

Wednesday, July 2, 2014

Statins & Increase Diabetes Risk

Higher-Dose Statins Linked to Moderate Increase in Diabetes Risk
      By Kelly Young
          Edited by Susan Sadoughi, MD , and Jaye Elizabeth Hefner, MD

 Higher doses of statins are associated with greater risk for incident diabetes than lower doses, according to a BMJ study.

Using healthcare databases from Canada, the UK, and the US, researchers identified 137,000 patients who were prescribed statins after hospitalization for a major cardiovascular event. At 2 years, patients prescribed a higher-dose statin (rosuvastatin, 10 mg and up; atorvastatin, 20 mg and up; simvastatin, 40 mg and up) had a 15% higher rate of new diabetes diagnoses than lower-dose statin users. Incidence rates were highest in the first 4 months.

The authors conclude: "Clinicians should consider our study results when choosing between lower potency and higher potency statins in secondary prevention patients, perhaps bearing in mind that head-to-head randomized trials of higher potency versus lower potency statins have not shown a reduction in all-cause mortality or serious adverse events in secondary prevention patients with stable disease."

- See more at: http://www.jwatch.org/fw108892/2014/06/02/higher-dose-statins-linked-moderate-increase-diabetes#sthash.pAKrtJTt.dpuf